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Abstract. In this paper, we investigate market design for online gaming platforms. We ask 
what motivates people to continue participation—success or failure. Using data from an 
online chess platform, we find strong evidence of heterogeneous history-dependent stop-
ping behavior. We identify two behavioral types of people: those who are more likely to 
stop playing after a loss and those who are more likely to stop playing after a win. We pro-
pose a behavioral dynamic choice model in which the utility from playing another game is 
directly affected by the previous game’s outcome. We estimate this time nonseparable pref-
erence model and conduct counterfactual analyses to study alternative market designs. A 
matching algorithm designed to leverage stopping behavior can substantially alter the 
length of play.
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1. Introduction
What determines our decision of when to stop a given 
endeavor? Does our past success motivate the stopping 
decision, or is a failure the primary determining factor? 
This paper focuses on the online gaming industry. Spe-
cifically, we explore the motivation behind stopping 
behavior using data from an online chess platform. The 
online gaming industry generated $162.3 billion in rev-
enue in 2020 and is predicted to reach an annual gross 
revenue of $295.6 billion by 2026.1 In this context, we 
investigate whether wins or losses influence people to 
play another game. Utilizing the identified behavioral 
patterns, we develop a theory that offers insights into 
how to encourage or discourage users on the platform 
from playing additional games.

We collect data from chess.com, the leading online 
chess platform boasting over 77 million users, where an 
average of 11 million chess games are played daily.2
We select a random sample of users and scrape the 
entire history of their play for the years 2017 and 2018. 
Using the 2017 data and based on their stopping behav-
ior, we identify 79% of the players as behavioral types 
and the remaining 21% of the users as nonbehavioral 
types. Among the behavioral group, about 30% are 
win-stoppers (players who are substantially more likely 
to stop playing after a win), and 70% are loss-stoppers 
(players who are substantially more likely to stop play-
ing after a loss).3 When classifying the same players 

using the 2018 data, we observe that their classifications 
remain stable over time for the vast majority of indivi-
duals. That is, 76.4% of users are identified as being 
the same type in 2017 and 2018. Because the user’s type 
seems consistent over time, the following pattern might 
be relevant for various interventions; loss-stoppers 
play more when they win, whereas win-stoppers play 
more when they lose. Consequently, by increasing or 
decreasing the user’s chances of winning a game, the 
platform can alter the likelihood of the user playing 
another game.

We develop a theoretical framework to further study 
and quantify the impact of changing the likelihood of 
winning for different types. Our model allows for time 
nonseparable preferences, in which future game utility 
can depend on the history of play.4 The structural esti-
mates from the model are consistent with the above- 
mentioned reduced-form evidence. For some people, a 
loss in a given game decreases the utility of playing 
another game, whereas for others, it increases the util-
ity from playing another game. We show that matching 
win-stoppers with, on average, more challenging oppo-
nents increases the average number of games played.

We use the structural estimates to conduct counter-
factual analyses, exploring the outcomes of alternative 
matching algorithms and quantifying the effects of such 
alterations. The platform currently prioritizes matching 
similarly rated players. Changing the matching algorithm, 
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which results in changing the winning chances, impacts 
users’ continuation likelihood. To illustrate, modifying a 
pairing that decreases a win-stopper’s winning percent-
age from 50% to 45% (or 40%) results in a 4% (or 6%) 
increase in the average number of games played during a 
session. Similarly, a pairing that increases a loss-stopper’s 
winning percentage from 50% to 60% (65%) can increase 
the average number of games played by a loss-stopper 
during a session by 1% (8%). To put these numbers in 
context, consider that over the course of a year, a 5% 
increase in session duration translates to the average user 
playing an additional 45 games, amounting to an extra 
6 hours and 37 minutes spent on the platform.5

Gaming platforms have several key objectives, includ-
ing gaining and retaining user popularity while generat-
ing profits through various channels, such as in-app 
advertising, subscriptions, and sponsorship. How could 
the platform use the information about the users’ behav-
ioral types to achieve these goals? First, increased user 
engagement in gaming sessions presents more opportu-
nities for the platform to display advertisements.6 Sec-
ond, an essential aspect of the online chess experience is 
the speed at which players are matched with opponents. 
The platform’s ability to efficiently match players within 
their skill level significantly impacts the user experience. 
The findings of our study can help platforms increase 
market thickness by motivating players to play more, 
which is particularly important during periods of low 
user activity online.

Our methodology is adaptable to other online plat-
forms provided that two conditions are met. First, there 
needs to be an environment in which a person repeat-
edly makes a decision. Second, one needs definitions of 
what constitutes success and failure in a given environ-
ment. Under these two conditions, the methodology 
developed in the paper can be applied to new data from 
other settings. More generally, our findings could be 
applied in various other environments beyond online 
gaming. Consider the advantages of identifying a stu-
dent’s behavioral type, enabling educators or tutors to 
tailor the curriculum for improved learning outcomes. 
For instance, students categorized as loss-stoppers might 
benefit from a gradual introduction to new concepts, 
whereas those classified as win-stoppers might thrive 
when presented with more significant challenges to sus-
tain their interest. Observing and identifying behavioral 
types in children could enable parents to frame pro-
blems in ways that cater to their child’s personality, 
ultimately enhancing their chances of success. Our 
approach takes the types as given and creates an envi-
ronment that could benefit all types of individuals.

2. Literature Review
Fundamentally, this paper presents and estimates a 
dynamic discrete choice model in which the agent may 

have time nonseparable preferences over the stochastic 
outcomes of their actions. In that sense, the application 
is analogous to the optimal stopping problems faced 
by, for example, taxi drivers, whose decisions to end 
their shifts may be influenced by their recent fares (see 
Camerer et al. 1997).7 Recent empirical research on this 
topic is complicated by spatial search frictions and is 
limited by the imperfect observability of both decision 
makers’ identities and decision makers’ histories of the 
outcome. In contrast, in the current paper, the data allow 
us to observe the stopping decisions, outcomes, and 
independent realizations of each agent’s decision prob-
lem. We take advantage of the rich data to demonstrate 
that an agent’s decisions cannot be reconciled in a model 
without time nonseparable preferences and that there is 
substantial heterogeneity in preferences across players. 
By structurally estimating a model with heterogeneous 
time nonseparable preferences, this paper contributes to 
a growing body of literature on structural behavioral 
economics (see DellaVigna 2018 for a review of the stud-
ies on structural estimation of behavioral models).

This paper also contributes to the literature on the 
source of motivation, particularly the effects of wins 
and losses on future behavior. The existing findings in 
this literature are mixed. For example, Haenni (2019) 
and Cai et al. (2018) show that past failure has a dis-
couraging effect on amateur tennis players and work-
ers, respectively. In contrast, in a study of National 
Basketball Association and National Collegiate Athletic 
Association basketball players, Berger and Pope (2011) 
find an encouraging effect of being slightly behind at 
halftime. We deviate from this literature by focusing on 
heterogeneity among players rather than an overall 
effect. We find that losses have encouragement effects 
for some individuals and discouragement effects for 
others.

This paper is related to the literature on reference 
dependence—the effect that has been documented 
in various settings. For example, researchers have 
explored reference dependence for cab drivers’ labor 
supply (Crawford and Meng 2011), professional golf 
players’ effort choice (Pope and Schweitzer 2011), risky 
choices in the Deal or No Deal game (Post et al. 2008), 
domestic violence (Card and Dahl 2011), and police 
performance after a lower than expected pay raise (Mas 
2006). We examine two types of reference dependence 
in the paper. First, we assume that the reference point is 
a player’s rating at the start of a session. Second, we 
assume that the reference point is the expectation of 
winning based on the opponent’s rating. That is, if the 
opponent has a higher rating, the player is more likely 
to expect to lose and vice versa. We calculate the magni-
tudes of these effects in our data, and we find that they 
are fairly limited; the reference dependence effect mag-
nitudes are roughly 17–70 times smaller compared 
with the impact of the last game outcome.
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Finally, the paper is related to studies using chess 
data. Researchers have used data from chess games to 
study risk, time, and other behavioral preferences for 
different age and gender groups.8 The closest parallel 
to the current study is a paper by Anderson and Green 
(2018), in which the authors use data on blitz games 
played on the Free Internet Chess Server between 2000 
and 2015.9 The authors show that players are more 
likely to stop playing after they set a new personal best 
rating. This is an interesting result; however, players 
rarely set such records.10 Anderson and Green (2018) 
show that players, on average, achieve a new personal 
best rating only twice every 15 years. In contrast, the 
current study focuses on the impact of the previous 
game, which affects a user’s decision after every game.

3. Data and Descriptive Results
In this section, we offer an overview of the chess.com 
platform, describe our data collection process, provide 
some definitions, and present descriptive results. We 
highlight patterns that suggest history dependence and 
heterogeneity in stopping behavior. We conclude by pro-
viding potential explanations for the observed behav-
ioral types.

3.1. About chess.com
We scraped the data from chess.com, the world’s most 
popular online chess platform, which caters to a diverse 
user base spanning from amateur enthusiasts to elite 
professionals. Notably, Magnus Carlsen, the reigning 
World Chess Champion from 2013 to 2023, is among 
the platform’s users. The platform chess.com offers free 
registration, enabling anyone to engage in matches 
against human or computer opponents via the website 
or the mobile app. Beyond gameplay, users can access 
other resources, including chess lessons and puzzles.

Upon registration on chess.com, a player is assigned 
an initial rating. During the data collection period, the 
default starting rating was 1,200.11 Subsequently, a 
player’s rating adjusts following each rated game, con-
sidering the game’s outcome and the opponent’s rating. 
Consequently, a player’s current rating serves as a 
reflection of the player’s current proficiency in chess; a 
higher rating signifies greater skill.12 We recover the 
rating updating rule from the data. Additionally, we 
recover from the data the matching mechanism, which 
closely follows the rules stated on chess.com: “When 
you choose to play a rated game with a specific time 
control (like 5 [minutes]), we try to find you an oppo-
nent who is closest to your current rating.”

3.2. Data Collection
We conducted our data collection in two phases. Utiliz-
ing Python’s Selenium package and the chess.com 

application programming interface (API), we com-
piled a list comprising 1,793,473 usernames. In the 
next step, we focused on collecting users’ game histo-
ries against human players. To prevent potential 
issues with web page access, we limited our analysis 
to a subset of users. Our approach involved ran-
domly selecting 1,000 usernames at a time and 
extracting their year 2017 history of play using the 
chess.com API. We repeated this procedure 41 times. 
We then repeated the data collection process to 
gather the game histories of the same users for the 
year 2018.

Each observation within the data set contains infor-
mation pertaining to the user and game characteristics, 
including the username, the user’s self-identified coun-
try of association, the user’s platform rating, the game’s 
duration, the game type, which user had white pieces, 
the game’s start and end times, and its ultimate out-
come. For a summary of the data set, please refer to 
Table 1.

During the data cleaning phase, we excluded users 
who had not participated in any games during 2017. 
Given our focus on relatively quick decision making, we 
omitted “Daily” games from the sample because they 
are long and can extend over several days. Additionally, 
we removed unrated games, accounting for 0.3% of the 
data. A game was designated as unrated if any result of 
the game did not impact the users’ ratings. For the analy-
sis presented in Section 3.4, we did not impose any fur-
ther restrictions on the data. However, in instances 
where we introduced additional constraints during the 
analysis, we have detailed those specifics within the 
respective sections.

Table 1. Data Description

Games 50,165,970 Average number of sessions 630
Sessionsa 13,237,558 Average session length 5.11
Users 20,997 Average ratingb 1,218
Rated games 99.7% Pr(Win | White Pieces) 50.9
Game types Pr(Win | Black Pieces) 47.0

Blitz 71.9% Pr(Win) 48.9
Bullet 21.7% Pr(Loss) 47.9
Daily 2.2% Pr(Draw) 3.2

Notes. The top left quadrant presents the number of games, sessions, 
and users in the sample. The top right quadrant presents per-user 
information on the number of sessions played, session length, and 
user rating. The bottom left quadrant presents the characteristics of 
games in the data set: the fraction of rated vs. unrated games and the 
fraction of the top three common game types. Finally, the bottom 
right quadrant presents information on the outcomes of games and 
highlights the small percentage (probability) of drawn games.

aIn Section 3.3, we provide a formal definition of a session; 
alternative definitions and corresponding results are in Online 
Appendix D.1.

bThe average number of sessions was calculated in two steps. First, 
we calculated the number of sessions for each user in the data. 
Second, we averaged across all users. Similarly, the average session 
length and the average rating were calculated in two steps.

Avoyan, Khubulashvili, and Mekerishvili: Behavioral Market Design 
Management Science, Articles in Advance, pp. 1–14, © 2024 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
0:

17
02

:3
84

0:
1d

e0
:a

4c
2:

5a
de

:9
58

4:
3a

5a
] o

n 
16

 S
ep

te
m

be
r 2

02
4,

 a
t 0

7:
07

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



3.3. Definitions
A game g is a single game played against a human oppo-
nent. A collection of games ordered by time stamp, 
(g1, g2, : : : , gn), is called a session if no game was played T 
minutes before g1 or after gn, and for any i → {1, : : : , 
n 1}, the time between gi and gi+1 is less than T.13 We 
call sessions that contain only one game (n↑1) only 
game. For sessions with n ↓ 2, g1 is the first game, gn is the 
last game, and any game between the first game and 
the last game is referred to as the middle game. Based on 
the terms defined above, we categorize games into four 
mutually exclusive groups: only (O), first (F), middle 
(M), and last (L) games.14

Let fW(·) be a function that calculates the winning 
percentage in a particular type of game; for example, 
fW(L) is a user’s winning percentage in the last games. 
In some cases, when the context is clear, instead of writ-
ing fW(O), fW(F), fW(M), fW(L), we write O, F, M, and L 
to indicate the winning percentage in only, first, mid-
dle, and last games, respectively.

3.4. Descriptive Results
We first establish that session-stopping behavior is his-
tory dependent. We then provide evidence of heteroge-
neity in stopping behavior, define behavioral types, 
generate predictions for extreme type definition, and 
examine time stability of behavioral types.

3.4.1. History Dependence. Consider a null hypothesis 
that a user decides to stop the game randomly; in other 
words, stopping behavior is history independent.

Hypothesis 1. Users’ stopping behavior is independent of 
the outcome of the previous game.

In this case, the winning percentage in the last games 
should be similar to the winning percentage in any 
other type of game.

For each user, we calculated the winning percentages 
in the first, middle, and last games, as defined in Sec-
tion 3.3. Figure 1 illustrates the relationship between 
the winning percentages in last games and middle 
games, with each point depicting one user (the solid 
line represents the linear regression line).

The null Hypothesis 1 posits that the correlation 
between the winning percentages in last games and 
middle games will be close to one. We find it to be 
 0.49 and statistically different from 1 with p< 0.001. 
Thus, at the aggregate level, the decision to stop is not 
random, and we reject Hypothesis 1.

3.4.2. Behavioral Types. We indeed reject the null 
hypothesis of history independence; however, the alter-
native hypothesis does not elucidate the precise rela-
tionship between the outcome of the preceding game 
and the decision to engage in another one. Further 

exploration is essential to discern whether users exhibit 
a propensity to stop a session following a win or a loss.

A closer examination of Figure 1 reveals an intriguing 
pattern; certain individuals demonstrate a considerably 
higher winning percentage in last games compared with 
middle games, whereas others exhibit a lower winning 
percentage in last games than in middle games. To 
unveil this heterogeneity and categorize users into dis-
tinct and exclusive types, we introduce the following 
definition.
Definition 1. A user is a behavioral type at the toler-
ance level of τ�and referred as 

• a win-stopper if fW(L) > fW(M) + τ�and
• a loss-stopper if fW(L) < fW(M) τ.
A user is a nonbehavioral type and referred as a 

neutral type if fW(L) → [ fW(M) τ, fW(M) + τ].
We describe how we calculate fW(·) to unpack the 

above definition of behavioral types. For illustrative 
purposes, we focus on fW(F) for some user A. We take 
this single user’s playing history for the year 2017 and 
look at every session that this user has played that 
lasted at least two games. For all these sessions, we 
examine the outcomes of only the first games that the 
player played and calculate the winning percentage by 
counting the number of wins. Say player A played 500 
sessions that lasted at least two games and won 225 of 
the first games of each session, so fW(F) ↑ 225=500 ↑
:45. In a similar fashion, we calculate fW(M), fW(L), and 
fW(O) for each user.

Recall that fW(M) tells us a player’s winning proba-
bility in middle games, which can be thought of as the 
player’s most typical games. If fW(M) ↑ :5, roughly 
speaking, the player wins 50% of the middle games 
that she plays. If the decision to stop the game is ran-
dom and is not dependent on the outcome of the previ-
ous game, then there should be no difference between 
the winning probabilities in the middle and last games. 
Hence, we should have fW(M) ↔ fW(L) ↔ :5. We say ↔ to 
emphasize that we allow for some tolerance τ�in Defini-
tion 1.

Figure 1. (Color online) Winning Percentage by Game 
Category 
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What does it mean if fW(M) ↑ :5 but fW(L) ↑ :25? 
Despite the ability to win 50% of typical games, the 
player is more likely to stop when she loses, leading to 
fW(L) < fW(M). Definition 1 would classify this player 
as a loss-stopper as long as τ < 25%.

Finally, let us look at the decomposition of users into 
types using Definition 1. We classify users into types 
using data from sessions that lasted two or more games. 
At a tolerance level of τ ↑ 7%, we find that 79% of users 
are behavioral types.15 That is, for 79% of users in our 
data, the difference between their typical winning per-
centage and the winning percentage in the last game is 
at least 7%. Within this group of behavioral types, about 
30% are win-stoppers, and 70% are loss-stoppers.

Using a moderately conservative threshold (equiva-
lent to one and a half standard deviations of the win-
ning probability distribution), a substantial portion of 
users exhibit history-dependent stopping behavior. To 
demonstrate that the tolerance level is large enough 
and that the results are not driven by chance, we simu-
lated data with a random stopping rule. In simulated 
data, each player plays the number of games that the 
player plays in our actual data. The decision to stop or 
not stop is decided randomly with an equal chance. 
Simulated data show that if the stopping decisions 
were random, we would have classified 26% of the 
users as behavioral types instead of 79%. This strong 
evidence warrants further investigations into the exis-
tence and stability of such behavioral types.

3.4.3. Predictions. To further explore the existence 
of the behavioral types, we take Definition 1 to the 
extreme. Let us assume that there are behavioral types 
such that a win-stopper always stops after a win and a 
loss-stopper always stops after a loss. This extreme def-
inition has a number of implications. That is, if there 
exist these behavioral types, we expect to see several 
patterns in the data. We formulate them as predictions.

Prediction 1. The correlation between the winning 
percentages in last games and only games is positive.

Prediction 1 follows from two observations. First, the 
winning percentage for win-stoppers in both only 
games and last games must be 100. Second, the winning 
percentage for loss-stoppers in both only games and 
last games must be zero. This is because if a win- 
stopper wins the initial game, she ends the session, and 
the game is classified as an only game. On the other 
hand, if this user loses the first game, she will start 
another game, making this session at least two games 
long; hence, the first game will be classified as the first 
game of a session and not as the only game. Therefore, 
a win-stopper’s only games are always wins. In addi-
tion, whenever the extreme win-stopper wins, she ends 
the session, and we classify that game as the last game 
if the session is at least two games long. Therefore, the 
winning percentage in the last games is 100. Following 
similar logic for loss-stoppers, we get that the winning 
percentage for loss-stoppers in both only games and 
last games must be zero. The combination of these two 
observations across types and players leads to Predic-
tion 1.

Figure 2(a) presents a scatterplot of the winning per-
centages in last games and only games. A strong positive 
relationship between the two winning percentages 
implies that individuals who are more likely to stop 
playing on a win (loss)—in other words, those who have 
a high winning (losing) percentage for last games—also 
have a higher winning (losing) percentage in only 
games, providing support for Prediction 1. Furthermore, 
we find that the winning percentage for only games is 
more than 25 percentage points higher for win-stoppers 
(64.0%) than for loss-stoppers (38.8%). Given that the 
average winning percentage in all games is 50.9% for 
win-stoppers and 50.4% for loss-stoppers, we can rule 
out the possibility that win-stoppers are simply better 
chess players.16

Figure 2. (Color online) Winning Percentage in Different Game Types 

(a) (b)

Notes. (a) Last and only games. (b) Last and first games.
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Prediction 2. The correlation between the winning 
percentages for first games and last games is negative.

Let us examine the logic behind Prediction 2. If a 
loss-stopper wins the initial game, she plays another 
one, and thus, the initial game is classified as a first 
game. In contrast, if a loss-stopper loses the initial 
game, she stops playing, and thus, the initial game is 
classified as an only game. Therefore, using the extreme 
types, a loss-stopper’s winning percentage for the first 
games must be 100, and by definition, the winning per-
centage for the last games must be 0. Similarly, for win- 
stoppers, the winning percentage in the first games 
must be 0, whereas the winning percentage in the last 
games must be 100. The combination of these two 
observations across types and players results in Predic-
tion 2.

Figure 2(b) presents a scatterplot of winning percen-
tages for the first games and last games. A strong nega-
tive relationship implies that individuals who are more 
likely to stop playing on a win (loss) have a lower win-
ning (losing) percentage in the first games, supporting 
Prediction 2. Following a similar intuition as in Predic-
tion 1 and Prediction 2, in Online Appendix B, we for-
mulate and evaluate four other predictions about the 
relationships between the winning percentages in dif-
ferent types of games. Similar to Prediction 1 and Pre-
diction 2, we find strong evidence in support of the 
four additional predictions, further highlighting the 
core findings on heterogeneous behavioral types.

3.4.4. Time Stability of Behavioral Types. We have 
classified users into types using the 2017 data. Here, we 
use the data for the same users from the year 2018 and 
classify them again using Definition 1. For each user, 
we have two labels: classification from 2017 and classi-
fication from 2018. We compare these classifications 
and calculate the fraction of users for whom the 

classifications match. We find a 76.4% match. Thus, 
76.4% of users are identified as having the same type in 
2017 and 2018. Furthermore, from the users identified 
as behavioral types in 2017, 84.5% of them are classified 
as the same type using 2018 data. Figure 3(a) presents 
the transition matrix between types from 2017 to 2018. 
Neutral types are most likely to experience a shift in 
classification. This result is not surprising because the 
definition of types is based on a threshold level, and 
most movement happens near this threshold.

When collecting the data, we did not place any 
restrictions on users’ history. Some users played numer-
ous games in 2017 and only a few in 2018, implying that 
the user’s behavioral classification in 2017 is more accu-
rate than the one in 2018 (because of the number of 
observations for this user). In addition, some users 
started playing late in 2017 (and therefore, played few 
games) but played many games in 2018. We show that 
this data limitation explains some of the movement 
between types as observed in the transition matrix. We 
redo the above analysis on a subsample of users who 
have played at least 300 games in both year 2017 and 
year 2018. Figure 3(b) presents the transition matrix 
between types from 2017 to 2018. As expected, the more 
information that we have on a user (more observations 
per user for each year), the more accurate the classifica-
tion is; hence, there are fewer transitions that we find 
between the categories. See Online Appendix D.5, 
where we examine the time consistency for more active 
users.

As highlighted in Section 3.4.2, to ensure that our 
results are not driven by chance and a low threshold 
level, we simulated data for the year 2018 as well with a 
random stopping rule. We find that if the stopping rule 
was random, we would expect 74% of win-stoppers 
and loss-stoppers to change their type from 2017 to 
2018. Instead, we see that 25% of win-stoppers and 12% 
loss-stoppers transition between types.

Figure 3. (Color online) Time Stability of Behavioral Types 

(a) (b)

Notes. (a) Entire data set. (b) Subsample.
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3.5. Theories Behind Behavioral Types
Before presenting our model, we explore potential 
explanations for the observed patterns of the two 
behavioral types in our data. Can reference depen-
dence, fatigue, the gambler’s fallacy, the hot-hand fal-
lacy, or learning account for these patterns? We begin 
with reference dependence. One plausible explanation 
is that a user’s personal best rating serves as a reference 
point; a user concludes a session when achieving a new 
personal best rating but continues playing otherwise. 
Although reference dependence can predict one type of 
behavior—ending a session after a win—it falls short in 
explaining loss-stoppers’ behavior. Loss-stoppers’ pat-
terns do not align with similar reference-dependent 
reasoning.

Now, consider the idea of users’ fatigue as they 
engage in successive games. Fatigue might lead to a 
decline in performance. We observe lower last-game 
scores among loss-stoppers, but the opposite holds for 
win-stoppers, who tend to achieve higher scores in 
their last game.

Next, let us explore two belief-based explanations: 
the gambler’s fallacy and the hot-hand fallacy.17 The 
gambler’s fallacy implies the regression of events to the 
mean; if something occurs more frequently than usual 
during a given period, it will happen less often in the 
future. This fallacy suggests that if a player wins sev-
eral games in a row, they might believe that their 
chances of winning again are reduced, leading them to 
stop after a win. Although the gambler’s fallacy can 
explain patterns observed among win-stoppers, it con-
tradicts loss-stoppers’ behavior.

As for the hot-hand fallacy, some athletes (and their 
fans) believe that after succeeding several times in a 
row, they have a “hot hand,” meaning that they are 
more likely to succeed in their next attempt. According 
to this belief, a player should continue playing after a 
win and stop after a loss because it indicates the end of 
their “hot hand.” This reasoning can explain the last- 
game results of loss-stoppers but not win-stoppers.

Finally, let us turn to the concept of learning in games 
literature, which draws from the reinforcement learn-
ing literature in psychology (a meta-analysis of the 
learning literature on public good games by Cotla 2015
examines other possible learning models and suggests 
that learning aligns more closely with reinforcement 
learning as opposed to belief-based or regret-based 
learning). Research has shown that in repeated games, 
choices that yield higher payoffs in the past are more 
likely to be chosen in the future (e.g., Roth and Erev 
1995, Chen and Tang 1998, Erev and Roth 1998, Haruvy 
and Stahl 2012). If a player plays online chess primarily 
for the pleasure of winning, the player is more likely to 
continue after a win and stop after a loss. This is similar 
to the evidence from the reinforcement learning litera-
ture in psychology, where the “win-stay, lose-shift” 

strategy is documented in many environments, such 
as repeated games (Posch 1999), sports (Tamura and 
Masuda 2015), and even among dogs (Byrne et al. 
2020). This perspective could explain the behavior of 
loss-stopper types.

To summarize the discussion above, it can very well 
be that the entire population is a mixture of people who 
follow or fall into different theories or principles. In this 
paper, we refrain from taking a stance on the specific 
underlying psychological forces driving such behavior. 
Instead, we propose an approach that accommodates 
win-stoppers, loss-stoppers, and neutral types within 
the same model, focusing on outcomes and accounting 
for heterogeneity.

4. The Model
In this section, we initially present the model featuring 
three distinct player types. Subsequently, we provide 
an overview of our identification strategy.

4.1. Description
Here, we outline a chess player’s dynamic decision- 
making process. Let yt denote the player’s rating at 
time t, which is observable to the player, the player’s 
opponent, and the econometrician. We assume that the 
player’s rating yt belongs to a finite space denoted as Y. 
There are three distinct player types: win-stopper (θW), 
loss-stopper (θL), and neutral (θN). Let Θ ↑ {θW,θL,θN}
be the set of all types, and let θ�be an element of this set. 
Importantly, a player’s type remains fixed over time.

A player’s type profile at time t, denoted as (yt,θ), con-
sists of the player’s time-variable characteristics, yt, and a 
static, unobservable type θ. To denote current states, we 
use variables without time subscripts, whereas we use 
“prime” superscripts to represent states in the subse-
quent period.

Each period, a player faces the following decision; 
considering the outcome of the previous game, the 
player’s type, and the player’s current rating, the player 
must decide whether to engage in another game or opt 
for the outside option by going offline. Prior to making 
this decision, the player evaluates the expected utility 
from participating in an additional game, which is cal-
culated as follows:

U(θ, y,χ) ↑ u(y) + (1 χ)lθ, (1) 

where θ�is the player’s type, y is the player’s current 
rating, χ�is the outcome of the just-concluded game, 
and lθ�is the magnitude of the effect of the previous 
game outcome.18 Note that lθ�can vary based on type 
θ → {θW,θL,θN}, allowing for asymmetric effects (not 
restricting lθW ↑ lθL ). If a player won a just-concluded 
game (χ↑1), the utility from playing another game is 
u(y). This term quantifies how much the player enjoys 
playing chess independently of the player’s type. In the 
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event of a loss in the previous game, the player’s utility 
from playing another game is contingent on the 
player’s type.

Definition 2. A player is a behavioral type if lθ > 0 or 
lθ < 0. She is 

• a win-stopper if lθ > 0 and
• a loss-stopper if lθ < 0.
A player is a neutral type if lθ ↑ 0.

There is an outside option, c, which is independently 
drawn from a distribution with density f(c) in every 
period. If a player ends a session, she takes the outside 
option c. If the player does not end the session, her util-
ity is U(θ, y,χ) from playing a new game, and she 
moves to the next period. At this point, the player faces 
the same decision with an updated game history incor-
porating the result of the just-concluded game that she 
played (χ↗). In each period, following the conclusion of 
a game, a player’s decision problem gives rise to the fol-
lowing Bellman equation:

V(θ, y,χ, c) ↑max
(

c, u(y) + (1 χ)lθ

+ δ
X

y↗,χ↗→
Y↘{0, 1}

p(y↗,χ↗ |y)V(θ, y↗,χ↗)
)

, (2) 

where δ�is the discount factor and p(y↗,χ↗ |y) is the joint 
probability of the player receiving (transitioning to) the 
rating y↗ and the outcome of the next game being χ↗, 
conditional on the player’s current rating y. We have

p(y↗,χ↗ |y) ↑
X

y i→Y

p(y, y i)p(y↗ |y, y i,χ↗)p(χ↗ |y, y i), (3) 

where p(y, y i) is the probability that a player with 
rating y is matched with a player with rating y i; 
p(y↗ |y, y i,χ↗) is the probability of receiving (transition-
ing to) rating y↗ given that the player’s current rating is 
y; that in the next game, she is matched with a player 
with rating y i; and that the outcome of the next game 
is χ↗. Note that we recover p(y, y i), p(y↗ |y, y i,χ↗), and 
p(χ↗ |y, y i) from the data. In our counterfactual analy-
sis, a player-to-player matching mechanism, p(y, y i), is 
a lever that market designers can use to influence a 
player’s decision to start a new game.

4.2. Identification
The identification and estimation of the theoretical 
model follow the tradition of Hotz and Miller (1993). 
We show that we can forgo numerical dynamic pro-
gramming to compute the value functions for every 
parameter vector, and we propose an estimation proce-
dure that is simple to implement and computationally 
efficient. More details and most of the proofs are rele-
gated to Online Appendix A.

We begin by identifying behavioral types. First, we 
establish that an optimal stopping rule is a threshold 
rule. Subsequently, we demonstrate that these thresh-
olds exhibit the following characteristics. (i) They are 
higher after a loss than after a win for win-stoppers, (ii) 
they are lower after a loss than after a win for loss- 
stoppers, and (iii) they are equal after a loss and after a 
win for neutral types. This outcome implies that for a 
given player, comparing the probability of ending a ses-
sion after a win with the probability of ending it after a loss 
allows us to determine the player’s behavioral type.
Claim 1. The optimal stopping rule is a threshold rule 
in c.
Proof. Note that in Equation (2), continuation values 
do not depend on the current realization of c. Hence, 
fixing the continuation values and current period util-
ity from playing another game, the second term under 
the max operator is lower than the outside option, c, 
for sufficiently high c. Thus, we have a threshold, 
c(θ, y,χ), above which the player stops playing and 
takes the outside option. w

Therefore, c(θ, y,χ) is a threshold such that a player 
with type profile (θ, y) who has an outcome χ�in the last 
game ends a session if and only if the realized c is at 
least as large as c(θ, y,χ). Recalling Equation (2), we 
have

c(θ, y,χ) ↑ u(y) + (1 χ)lθ + δ
X

y↗,χ↗→
Y↘{0,1}

p(y↗,χ↗ |y)V(θ,y↗,χ↗):

(4) 
The following proposition leads to the identification of 
behavioral types.
Proposition 1.

i. c(θW, y, 0) > c(θW, y, 1);
ii. c(θL, y, 0) < c(θL, y, 1); and

iii. c(θN, y, 0) ↑ c(θN, y, 1).
Proof. The proof follows from Equation (4) and Defi-
nition 2. w

Proposition 1 suggests that the probability of win- 
stoppers choosing to play another game is greater when 
they lost the previous game compared with when they 
won and conversely for loss-stoppers. Meanwhile, for 
neutral types, the probability of continuing the session 
remains consistent, regardless of the last game’s out-
come. Building on Proposition 1, we can determine a 
player’s behavioral type from the data by examining the 
player’s stopping probabilities following wins and 
losses. We use the data to recover winning and match-
ing probabilities.

To identify the remaining parameters of the model, 
we make an assumption regarding the parametric distri-
bution of the outside option, opting for an exponential 
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distribution for the estimation process.19 With this 
assumption in place, we identify both lθ�and the value 
associated with continuing a session based on the stop-
ping probabilities following wins and losses.

A player’s value function relies on both the values 
associated with continuing a session and the parameter 
of the outside option distribution. Provided that we 
identify the value from continuing a session and we 
normalize the distribution parameter, we identify the 
value functions. Finally, we show that δ�and the utilities 
from playing a game are identified using the player’s 
value from continuing a session and her value function. 
For more comprehensive information on the identifica-
tion process, along with relevant claims and their corre-
sponding proofs, please refer to Online Appendix A.

5. Estimation and Counterfactual 
Analysis

In this section, we first provide further details on the 
restrictions imposed on the data for structural estima-
tion. Subsequently, we present the outcomes of the 
structural estimation and conduct a counterfactual 
analysis.

5.1. Preliminaries
We impose two restrictions on the sample.20 First, we 
consider blitz games to ensure a more uniform time 
spent per game. Second, we focus on games where 
the users’ pregame rating falls within the range of 
1,000–1,600. This range selection is informed by the 
average and the standard deviation of the blitz ratings 
in the data.21 The second condition is imposed to ensure 
that users ratings are reasonably close. This serves two 
purposes. First, we avoid matching users with signifi-
cantly different ratings, and second, it helps mitigate 
missing values in the rating transition matrix.22 After 
applying these restrictions, our data comprise 9,192,795 
observations from 10,395 unique users.

The next step in the structural estimation analysis 
involves partitioning the rating range into grids. To 
achieve this, we utilize the average rating change as a 
guideline. In the primary data, the average rating 
increase following a win is 8.02 points, whereas the 
average decrease after a loss is 7.97 points. Conse-
quently, we segment the rating space [1,000, 1,600] into 
eight-point intervals, yielding a total of 75 grids.

Proposition 1 suggests that for neutral types, the stop-
ping probability is the same after both wins and losses. 
However, for practical empirical analysis, we redefine 
neutral types as users whose stopping probabilities after 
wins and losses are κ-close: that is, |Pr(Stop |Win) Pr 
(Stop |Loss) | ≃ κ. Similarly, we modify the win-stopper 
and loss-stopper definitions such that a user is a win- 
stopper if Pr(Stop |Win) Pr(Stop |Loss) > κ�and a loss- 
stopper if Pr(Stop |Win) Pr(Stop |Loss) <  κ. In this 

section, we use κ ↑ 0:07. Online Appendix D presents 
the estimation results using κ ↑ 0:05 and κ ↑ 0:09, and 
the model type decomposition as κ�is varied between 0 
and 0.2.

5.2. Structural Estimates and 
Counterfactual Analysis

Our estimation strategy parallels the identification 
proof outlined in Online Appendix A. Recall Equation 
(1), which is the expected utility from playing an addi-
tional game. Let us focus on the parameters: lθ�for 
θ → {θW, θL, θN}, which represents the additional util-
ity associated with the outcome of the previous game. 
Table 2 presents the estimates of lθ�for each type. To 
ensure stability of the results, we bootstrap the data 300 
times (see Online Appendix D.4 for the distribution of 
the point estimates).

Table 2 reveals notable differences. For win-stoppers, 
the utility from playing another game is 0.678 higher 
after a loss compared with after a win, as expected. 
This boost in expected utility for win-stoppers in the 
subsequent games after a loss (χ↑ 0) is in contrast to 
the lower expected utility after a win (χ↑ 1). On the 
other hand, for loss-stoppers, the expected utility from 
playing another game is 0.610 lower after a loss com-
pared with after a win. For neutral types, the result of 
the last game has no sizable effect on their utility.

Now, we move to address the question of how the 
expected session length is affected when we modify the 
probability of winning by adjusting the matching algo-
rithm on the platform. Figure 4 illustrates the percent-
age change in the average session length (the x axis) in 
response to alterations in the winning percentage (the y 
axis) resulting from changes in the matching algorithm. 
The solid line in Figure 4 represents a winning percent-
age of around 50%. According to the definition of 
behavioral types, a decrease in the winning percentage 
for win-stoppers and an increase in the winning per-
centage for loss-stoppers should lead to longer average 
session lengths. Figure 4 validates this intuition and 
quantifies the effects. When we alter the matching algo-
rithm to pair win-stoppers (triangles in Figure 4) with 
increasingly higher-rated opponents on average, their 
winning percentage decreases, but the average session 
length increases.

For win-stoppers, using a matching process that 
decreases the winning percentage from 50% to 45% 
increases the average session length by 3.75%. Using a 

Table 2. Bootstrapped Values for lθ

Parameter Mean Standard deviation

lθW 0.678 0.005
lθN  0.014 0.003
lθL  0.610 0.002
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matching algorithm that drops the winning percentage 
to 40% increases the average session length by around 
6%. Similarly, for loss-stoppers, using a matching algo-
rithm that increases the chances of winning from 50% 
to 60% increases the average session length by 1%. 
Using a matching process that increases the winning 
percentage from 50% to 65% increases the average ses-
sion length by more than 7.5%.

In the sample with sessions with only blitz games, an 
average user played 274 sessions per year. An average 
session lasted about 3.29 games, and the average blitz 
game lasted 7 minutes and 29 seconds. Thus, over one 
year, a 5% increase in session length results in an aver-
age user playing 45 more games or spending 6 hours 
and 37 minutes longer on the platform.

It is important to highlight that more games do not 
have to translate into extended time on the platform. 
One could further argue that asymmetric matching in 
ratings could even reduce the length of a game because 
a strong player could win the game faster against a 
weaker player. We explore these concerns in detail in 
Online Appendix E. In particular, Online Appendix E.1 
shows that the median correlation between the minutes 
spent on a session and the number of games played 
during the session is 0.98 across users. Online Appen-
dix E.2 displays that the correlation between oppo-
nents’ rating difference and how long the game lasts is 
close to zero. We conjecture that the observed high cor-
relation between the number of games and time on the 
platform and the close-zero correlation between rating 
difference and playing time are because of the nature of 
blitz games, which by definition, are time constrained. 
Taking all of the evidence together, we conclude that 
more games can result in more time spent on the 
platform.

5.2.1. The Effects of Practice and Welfare Discus-
sion. Let us explore a positive externality associated 
with playing more games: the impact of practice on a 
user’s rating, which serves as a proxy for skill and is a 
socially desirable outcome. We analyze the highest rat-
ing achieved by a user in 2017 and the total number of 
games that the user played during the same year. A lin-
ear regression (see column (1) in Table J.7 in Online 
Appendix J for details) reveals a significant positive 
association between the number of games played and a 
higher rating.

To account for player-specific variations, we employ 
a fixed effects (FE) panel data estimation method. We 
define a unit as a month in the 2017 data. For each 
month, we calculate the number of games played and 
the highest achieved rating, resulting in 12 observations 
per typical player. The FE estimation, with the total 
number of games in a month as an independent vari-
able and the highest rating achieved as the dependent 
variable, reaffirms the positive relationship between 
practice and skill improvement (see column (3) in Table 
J.7 in Online Appendix J).23 Furthermore, we find that 
both win-stoppers and loss-stoppers experience similar 
effects from practice, suggesting that neither behavioral 
type holds a distinct advantage in skill development 
(see column (4) in Table J.7 in Online Appendix J).

The above discussion raises questions about the impli-
cations of extending time on the platform on overall 
welfare. Increasing the time spent playing can be seen as 
beneficial for the platform as it leads to more user 
engagement and for users themselves as it enhances 
their skill levels. However, we acknowledge that total 
welfare can be influenced by other factors not included 
in our model. The model assumes that players derive 
utility from playing another game and does not consider 
the potential negative effects of extended play. For 
instance, increased time on the platform might reduce 
a player’s productivity if that time was originally 
intended for work or study. In this paper, we simplify 
our analysis by excluding such concerns. Nevertheless, 
future research could explore the unintended conse-
quences of longer play in more detail.

6. Other Factors Influencing the 
Stopping Decision

Up to this point, our focus has centered on the influence 
of the just-completed game’s outcome on the decision 
to play a new game. In this section, we consider addi-
tional factors that could potentially affect stopping 
decision. To assess these factors, we employ a Cox 
proportional-hazards (CPH) model, which enables us 
to examine how various characteristics, referred to 
as covariates, impact the session-stopping rate, also 
known as the hazard rate. This approach allows us to 

Figure 4. (Color online) Winning Percentage and Percentage 
Change in Session Length 

Notes. The x axis presents the percentage change in average session 
length, and the y axis depicts change in the winning percentage, 
which in turn, is a result of changing the matching algorithm. The 
winning percentage against a similarly rated player is around 50% 
(the solid line).
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analyze the influence of specified factors on whether a 
session concludes or persists.

We employ a CPH model that incorporates time- 
dependent covariates. The general form of this model is 
outlined as

hj(t, xj(t)) ↑ h0(t) exp {xj(t)↗β}: (5) 

Equation (5) breaks down as follows. The left-hand 
side signifies the risk that game j in period t, character-
ized by xj(t), marks the end of the session (i.e., the ses-
sion ends after this game). The right-hand side of the 
equation comprises two elements: baseline risk and rel-
ative risk.

The baseline risk, denoted as h0(t), represents the risk 
of a game being the final game in a session when all 
covariates are set to zero (xj(t) ↑ 0). The relative risk, 
expressed as expxj(t)↗β, quantifies the proportional 
increase or decrease in risk associated with the covari-
ates specified in xj(t).

We aim to find whether factors beyond the outcome 
of the just-completed game and a user’s behavioral type 
influence the decision to stop. Prior to evaluating addi-
tional covariates, we estimate the model with three vari-
ables: the outcome of the just-completed game, a user’s 
behavioral type, and the interaction of the two variables. 
To ease the interpretation of the results, we assume that 
there are no neutral types and that we only have two 
types of users: win-stoppers and loss-stoppers. Table 3
presents the results of the CPH estimation. The variable 
Outcome takes a value of one if a user won the game and 
zero otherwise. The variable Type is assigned a value of 
one for win-stoppers and zero for loss-stoppers. Conse-
quently, the baseline for the estimation is a loss-stopper 
who experienced a loss in the game.

Table 3 reveals that for win-stoppers, the hazard rate 
is higher after a win than after a loss. This is evident in 
the estimates. After a win, the hazard rate is lower by 
0.17 ( 0:58 0:69 + 1:10 ↑ 0:17) compared with the 
baseline (which in the estimation, is a loss-stopper who 
lost the game). After a loss, the hazard rate is lower by 
0.69 compared with the baseline. In simpler terms, for 
win-stoppers, the probability of ending a session is 
lower after a loss than after a win, as expected. Con-
versely, for loss-stoppers, we observe the opposite rela-
tionship. A win in the just-completed game reduces the 
hazard rate by 0.58 compared with a loss (baseline). The 
importance of those coefficients is easier to comprehend 

using the information provided in the third column: 
exp(Coef). In particular, if exp(Coef) ↑ 1, it implies that 
a given variable has no impact on the decision to end 
the session, whereas exp(Coef) being higher or lower 
than one indicates increased or decreased chances of 
ending a session, respectively. For example, the value 
of exp(Coef) for the Outcome variable is 0.56, signify-
ing that a loss-stopper is 44% ((1 exp(Coef)) ·100%) 
less likely to conclude the session after a win than after 
a loss.

Now that we have reaffirmed our results from previ-
ous sections using CPH analysis, we add other vari-
ables that we hypothesize may affect the stopping 
behavior. We consider the outcome in the game before 
the just-completed game, the opponent’s rating, the 
user’s initial rating, and two interaction terms. In what 
follows, we provide a motivation for why we consider 
these covariates.

The outcome of the game before the just-completed 
game (named the previous outcome) could potentially 
impact stopping decisions. For instance, some users 
might be more inclined to stop after experiencing two 
consecutive wins as opposed to just one, whereas 
others may be more likely to stop playing after endur-
ing two consecutive losses.

Another factor that might sway a user’s decision to 
stop is the user’s initial rating within a session. If a 
user’s stopping strategy entails concluding a session 
once the user’s current rating surpasses the initial ses-
sion rating, then the rating difference between the first 
and last games of a session becomes significant. Includ-
ing this variable and its interaction with the Outcome 
variable helps us discern if there exists reference depen-
dence concerning the initial rating and if users react dif-
ferently when the same rating change is achieved after 
a win or after a loss.

We have also incorporated the opponent’s rating 
into our analysis driven by the idea of reference depen-
dence. Winning against a stronger opponent might be 
more satisfying than winning against a weaker oppo-
nent. On the other hand, losing to a weaker opponent 
may feel like a greater setback than losing to a stronger 
one. In other words, winning against a weaker oppo-
nent is typically expected, so losing in such a scenario 
might be seen as a more significant failure. To assess 
whether and to what extent winning or losing against 
opponents of varying strengths affects stopping deci-
sions, we introduced the “opponent rating difference,” 
which measures the disparity in ratings between the two 
users. By including the “opponent rating difference” 
and its interaction with the Outcome, we can control if 
the outcome of the just-completed game has a different 
effect for a given type if that outcome is achieved against 
a stronger or weaker opponent.

Figure 5 provides a visual illustration of the results 
when we include all of the variables together in the 

Table 3. Cox Proportional-Hazards Model with Type 
Heterogeneity

Covariate Coefficient exp(Coef) p-value

Outcome  0.58 0.56 <0.005
Type  0.69 0.50 <0.005
Type ↘ Outcome 1.10 3.01 <0.005

Note. Coef, coefficient.
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CPH analysis (see Online Appendix F for the CPH 
results when we add variables one at a time). To ensure 
that the coefficients of these variables are easily compa-
rable, we standardized both the rating change and 
opponent rating difference variables to have a mean of 
zero and a standard deviation of one.24 We can easily 
see from Figure 5 that the magnitude of the effect of the 
Outcome is much larger for both win-stoppers and loss- 
stoppers than for all of the other variables that we con-
sider. This result highlights the fact that the outcome of 
just-completed game carries the most substantial effect. 
This is not to suggest that the platform should ignore 
additional factors that influence a user’s decision to 
play another game. Instead, we emphasize that in 
terms of magnitude, the outcome of the just-concluded 
game carries the most sizable effect.

7. Conclusion
This paper explores previously undocumented behav-
ioral type heterogeneity in stopping behavior. We inves-
tigate stopping behavior on an online chess platform, 
shedding light on the factors influencing individuals’ 
stopping decisions. Leveraging rich data spanning 
two years from chess.com, we categorize 79% of users 
as behavioral types, whereas the remaining 21% are 
considered nonbehavioral (neutral) types. Among the 
behavioral types, one third fall into the win-stopper cate-
gory, with the remainder classified as loss-stoppers. 
Win-stoppers tend to halt their play after a win, whereas 
loss-stoppers are more inclined to stop after a loss. We 
then explore how platforms can utilize knowledge of 
user types to alter the number of games played.

Although the paper focuses on chess games on one 
platform, the model and the descriptive analysis can be 
applied to other environments as long as they satisfy 
two main conditions. First, there needs to be an environ-
ment where individuals repeatedly face a similar deci-
sion (for example, to play another level of the same game 
or to accept another passenger’s request for pickup 
as a ride-sharing driver). Second, the outcome and 
wins/losses must be well defined (won/lost the new 
level).25 For instance, this framework is applicable to 
many mobile games as they fulfill the conditions above.

It is crucial to note that for meaningful counterfactual 
analyses, the platform must have some control over 
altering chances of whether a user succeeds or fails. On 
chess.com, where game difficulty and rules are fixed, 
modifying winning probabilities involves influencing 
potential opponents’ strength by adjusting the match-
ing algorithm. In other games with variable difficulty 
levels or hints, the platform can alter the winning prob-
abilities by modifying the underlying difficulty or pro-
viding hints. In the case of ride-sharing platforms, such 
as Uber and Lyft, the driver’s type could be how the 
driver’s stopping decision is affected by tips or the 
expected length of a ride. Then, the labor supply can be 
increased by using the information on riders’ tipping 
behavior (or their expected length of the ride) and match-
ing suitable riders with the driver. Future research can 
explore data from diverse environments to identify simi-
lar heterogeneous behavioral types. Additionally, inves-
tigating whether a person’s behavioral type remains 
consistent across various settings could yield intriguing 
insights.

Figure 5. (Color online) CPH Coefficients for Win-Stoppers and Loss-Stoppers 

Notes. The coefficients represent the quantitative relationships between the variables and the session-stopping rate as per the Cox proportional- 
hazards model. These coefficients indicate whether a variable tends to increase or decrease the likelihood of ending a session. A positive coeffi-
cient suggests an increase, whereas a negative coefficient suggests a decrease in the session-stopping rate compared with the baseline conditions. 
The magnitudes of these coefficients are standardized to represent the strength of the effect in standard deviations, allowing for meaningful com-
parisons among different variables. Diff, difference; Opp, opponent.
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Endnotes
1 The sources are https://www.mordorintelligence.com/ and https:// 
www.statista.com/.
2 The top three most frequently visited chess sites, in order of popu-
larity, are chess.com, chess24, and Lichess. Our data set includes 
users from 191 different countries; for a detailed country-level anal-
ysis, refer to Online Appendix K.
3 We refer to nonbehavioral types as neutral types. These players 
are about equally likely to stop playing after a win and after a loss 
(see Section 3.4.2 for a formal definition). The three types—win- 
stoppers, loss-stoppers, and neutral types—are mutually exclusive 
and collectively exhaustive categories.
4 See Braun et al. (1993) and Dragone and Ziebarth (2017) for evi-
dence of time nonseparable preferences in aggregate consumption 
and novelty consumption, respectively. See Turnovsky and Mon-
teiro (2007) for the effects of consumption externalities under time 
nonseparable preferences.
5 An increase in session length could cause several crowding-out 
effects. See Online Appendix E for a thorough discussion of why an 
increase in the number of games will likely correspond to an 
increase in time spent on the platform.
6 The game can be played on a computer (on the chess.com website) 
or a mobile app (on the chess.com app). The website displays ads 
during the entire game on the sides of the screen. On the mobile 
app, ads are displayed after the game. In both cases, we presume 
that more games (weakly) increase ad consumption.
7 See also Farber (2005, 2008, 2015), Abeler et al. (2011), Morgul and 
Ozbay (2015), Cerulli-Harms et al. (2019), Frechette et al. (2019), and 
Thakral and Tô (2021).
8 See the following recent papers that use chess data to study eco-
nomic behavior: Gerdes and Gränsmark (2010), Gränsmark (2012), 
Dreber et al. (2013a, b), Bertoni et al. (2015), Linnemer and Visser 
(2016), De Sousa and Niederle (2022), and De Sousa and Hollard 
(2023).
9 On chess.com, blitz is a type of chess game in which each player 
has a specific amount of time (between 3 and 10 minutes) for the 
entire game. The blitz games analyzed in Anderson and Green 
(2018) lasted between 6 and 30 minutes.
10 On average, in our data set, it takes a user 119 games to surpass 
the previously recorded personal best rating. Further, more experi-
enced users take longer to set new records. For example, users with 
at least 600 games take 275 games to reach a new personal best 
rating.
11 There was a change on chess.com regarding the initial rating 
assignment system, and now, users can choose to start from the rat-
ing of 400, 800, 1,200, or 1,600 based on their chosen skill level.

12 The average rating in our sample is 1,218, close to the initial rat-
ing. However, the majority of users in our sample are highly active 
players. The median and the mean number of games played by the 
users in both years are 2,389 and 1,206, respectively. Further, note 
that the rating reflects expertise conditional on experience. For 
example, user A, who just joined the platform and has a rating of 
800, is not the same as user B, who has played 1,000 games and has 
a rating of 800.
13 For the main analysis, we set T↑ 30 minutes; we then vary T to 
check the robustness of the results, and we find no substantial dif-
ferences. See Online Appendix D.1 for more details.
14 The procedure that we used to label the games within a session 
involves two steps. The first step of handling the data is removing 
daily games. The second step is to define sessions and label games 
according to the definitions in Section 3.3 before cleaning the data 
any further. This way, we avoid a game being classified as the last 
game of a session simply because the user changed the type of chess 
game that they are playing. We find that 96% of all sessions are 
homogeneous in terms of game type and game length. That is, 
players do not change the game type and the game time lengths 
within a session. Furthermore, among sessions that contain at least 
one blitz game, 97.98% are homogeneous. In other words, if a ses-
sion has one blitz game, in 97.98% of times, all of the games in that 
session are blitz games.
15 One standard deviation in winning probabilities in any game in 
the data is around 4.7%. We do all of the analyses in the paper for 
tolerance levels of 5%, 7%, and 9%, which are around 1, 1.5, and 2 
standard deviations, respectively. For the main part of the paper, 
we present the results with a 7% tolerance level. See Online Appen-
dix D for the effects of changing the tolerance on behavioral decom-
position and structural estimates.
16 Online Appendix G presents winning percentages and standard 
deviations for each behavioral type and game category. Further, 
Online Appendix I shows that there is no correlation between types 
and ratings.
17 Miller and Sanjurjo (2018) found evidence suggesting that the 
hot-hand fallacy might not be a fallacy in the context of basketball 
free throws.
18 Our model only considers wins and losses, omitting draws. 
Although draws are more common in classical chess, they are less 
frequent in fast chess. In our data, only 3.2% of the games ended in 
a draw. We treated draws as wins if they occurred against stronger 
opponents (players with higher ratings) and as losses if they 
occurred against weaker opponents. As a robustness check, we also 
estimated our model by excluding games that ended in a draw, and 
our estimation results remained unaffected by this change.
19 We select the exponential distribution because it imposes no 
additional implicit assumptions beyond being a continuous distri-
bution on (0,⇐). This is because of the fact that exponential distri-
bution represents the distribution with maximum entropy among 
the class of continuous distributions on (0,⇐) with a given mean 
(see Conrad 2004, theorem 3.3).
20 Structural estimation results using the complete data can be 
found in Online Appendix D.3.
21 The average blitz rating is 1,303, with a standard deviation of 
324. We round these figures to 1,300 and 300, respectively, resulting 
in the rating range [1,300 300, 1,300 + 300].
22 Consider a user with a rating of 700. In our data set, it is improba-
ble that this user has ever played against an opponent with a rating 
of 2,000. When calculating the potential new rating for a user with a 
rating of 700 after playing against a user with a rating of 2,000, we 
need to consider all such games in the data set. However, because 
there may not be any single game with such a vast rating difference, 
we encounter missing values. To minimize estimation errors, we 
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limit our analysis to games for which we have a sufficient quantity 
of data.
23 It is worth highlighting that most of our players are not top pro-
fessional chess players. For professionals, practice might only help 
a little because they could have reached the limits of their abilities.
24 Standardization ensures that if the effect of the rating change is 
15 times smaller than the effect of the last game result, it is 
expressed in terms of 15 standard deviations (which corresponds to 
approximately a 1,080-rating-point difference) rather than 15 rating 
points.
25 In the case of drivers on ride-sharing apps, it is not straightfor-
ward to define what would constitute a win or a loss. Receiving a 
tip or not is one of the possibilities. Other options could be the 
expected length of the ride or the drop-off location.
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Thakral N, Tô LT (2021) Daily labor supply and adaptive reference 
points. Amer. Econom. Rev. 111(8):2417–2443.

Turnovsky SJ, Monteiro G (2007) Consumption externalities, produc-
tion externalities, and efficient capital accumulation under time 
non-separable preferences. Eur. Econom. Rev. 51(2):479–504.

Avoyan, Khubulashvili, and Mekerishvili: Behavioral Market Design 
14 Management Science, Articles in Advance, pp. 1–14, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[2

60
0:

17
02

:3
84

0:
1d

e0
:a

4c
2:

5a
de

:9
58

4:
3a

5a
] o

n 
16

 S
ep

te
m

be
r 2

02
4,

 a
t 0

7:
07

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://dx.doi.org/10.2139/ssrn.3241779
https://dx.doi.org/10.2139/ssrn.3241779

	Behavioral Market Design for Online Gaming Platforms
	Introduction
	Literature Review
	Data and Descriptive Results
	The Model
	Estimation and Counterfactual Analysis
	Other Factors Influencing the Stopping Decision
	Conclusion


