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Abstract

There are two ways in which people usually engage with contracts—compensation schemes to

execute tasks. They can choose between them (contract choice), or allocate time across them (contract

time allocation). In this paper, we study how people behave in each of these problems. A standard

model suggests that drafting a cost-effective contract that both induces an agent to choose it and

allocate time to it presents a significant challenge. However, our experimental results indicate that

this tradeoff might be less pronounced than the model predicts due to what we call the attractiveness

bias–a tendency for subjects to allocate more time to contracts they find appealing, even when the

model suggests they should get relatively little time.
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1 Introduction
Much progress has been made in understanding when a contract’s compensation scheme
will induce an Agent to behave in a way that is beneficial to a Principal. However, in a
world where different contracts compete for the Agent’s attention, knowing how the Agent
decides what contracts to engage with in the first place is equally important. After all, a
contract’s effectiveness in inducing a desired behavior is only useful if someone is willing
to engage with it, given the other contracts available.

There are two ways in which the Agent can engage with a contract: by choosing from a
menu of contracts (contract choice) or by allocating time across the contracts in the menu
(contract time allocation). Examples of contract choice include workers who choose be-
tween exclusive contracts, busy contractors who often can only add one new contract to
their portfolio and, hence, must choose which contract to include given the contracts they
are offered, and CEOs who decide between the different compensation packages that com-
panies offer. Examples of contract time allocation include food delivery workers who split
their time between existing food delivery apps, contractors who must split their time be-
tween the projects in their portfolio, and employees who must decide how to split their time
between tasks they must perform. Whereas contract choice has received some attention in
the experimental literature, contract time allocation remains understudied (see the Related
Literature section).

In this paper, we design an experiment to study contract choice and, more importantly,
time allocation between contracts. In the first part of the experiment, subjects choose one
contract from several pairs of contracts. In the second part, they allocate a time budget
between the contracts in these pairs. We are particularly interested in how our subjects’
behavior in the experiment can inform the design of contracts that perform well in these
two problems.

Our contracts pay a lottery that yields either a high or a low prize.1 The lottery that
the Agent receives depends on whether she completes a task by a deadline (which the
Agent self-imposes when allocating time). If she does, she will play a lottery in which the
probability of getting the high prize is higher than in the lottery she would play if she did
not complete the task by the deadline. We interpret the contract’s low and high prizes as

1 Real-world contracts do not typically use randomization; however, randomization in our contracts emu-
lates the uncertainty a person faces in completing a task by a deadline. Therefore, even if she allocates plenty
of time to a task, she cannot be sure that she will complete the task by the deadline. However, by allocating
more time to a task, she can at least increase the probability of completing the task by the deadline.
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hard incentives, i.e., the Agent’s payment, and the probabilities of getting the high prize
conditional on succeeding and failing the task as soft incentives, given they influence the
Agent’s beliefs about the likelihood of getting the high prize. Importantly, these beliefs are
a function of the time allocated to a contract’s task. Finally, the difficulty of the task being
contracted for is proxied by the success rate of others who attempted the same task under a
given deadline in the past. Based on this rate, subjects can form beliefs about how difficult
the task is and, hence, how likely they are to succeed in the task by the deadline.

Our experimental design is informed by a standard model of choice and time allocation
between contracts that makes sharp predictions about behavior in the experiment given
the contracts we use. Therefore, the model’s predictions provide a benchmark to interpret
the behavior of our subjects. There are two features of our contracts that play a central
role in these predictions. The first feature is the expected utility of the lottery that the
contract yields if a subject cannot complete the contract’s task by the deadline. We call it
the contract’s (expected) flat fee. The second feature is the difference in the expected utility
of the lottery the contract yields if a subject completes the task by the deadline and the
flat fee. We call this difference the contract’s (expected) bonus. Our contracts can thus be
interpreted as bonus-based contracts: they pay a (expected) flat fee plus a (expected) bonus
conditional on performance.

Based on these two features, the model offers three lessons about the subjects’ behavior
in the experiment. First, the flat fee is crucial for the effectiveness of a contract in contract-
choice. Second, a contract’s bonus is the only contractual feature that should matter for
contract-time allocation. These two lessons imply a third: a resource-constrained principal
faces a trade-off when designing bonus-based contracts. Increasing a contract’s flat fee at
the expense of its bonus will help to compete for the Agent’s choice, but at the expense
of making it less competitive in attracting his time. Similarly, increasing the bonus at the
expense of the flat fee will help a contract to attract an Agent’s time but at the expense of
making it less competitive for the Agent’s choice.

Our experiment allows us to investigate the validity of these lessons. In the experiment,
we present subjects with eight pairs of contracts. In the first part of the experiment, subjects
must choose one contract from each pair. They will then have 60 seconds to attempt to
complete the chosen contract’s task. In the second part of the experiment, they must split
120 seconds across the two contracts in each pair.

We designed these pairs of contracts to achieve three goals. The first goal is to in-
vestigate how ceteris paribus changes in a contract’s parameters affect its performance
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in contract-choice and contract-time allocation. For instance, how do subjects respond to
changes on hard as opposed to soft incentives? The second goal is that the pairs should in-
corporate the Principal’s resource constraint. The third goal is that the model should make
sharp predictions about choice and time allocation in the experiment. To achieve these
goals, we paired a baseline contract with four types of contracts derived from it by mod-
ifying either its prizes, probabilities of getting the high prize, or the degree of difficulty
of its task, while keeping their expected costs at or below the expected cost of the base-
line contract. The four types of contracts are confidence, risk, dominated, and ambiguous
contracts.

In confidence contracts, the Agent gets the high prize with a higher probability than in
the baseline if she is successful in the task but with a lower probability than in the baseline
if she fails it. They are thus a mean-preserving spread in probabilities (relative to the
baseline), which makes them more attractive than the baseline for more confident subjects
in contract-choice (hence the contracts’ name). In risk contracts, the high prize is higher
than in the baseline, but the low prize is lower. They are thus a mean-preserving spread in
prizes (relative to the baseline). Therefore, the Agent will face a riskier lottery than in the
baseline contract, no matter if she solves the task. In dominated contracts, the probability
of getting the high prize is smaller than in the baseline, regardless of whether the subject
can solve the task. Whereas the choice between the baseline and a dominated contract is
obvious, time allocation is trickier (as discussed later). Finally, in ambiguous contracts, the
contract only provides partial information about the difficulty of its underlying task.

Our results suggest that a contract’s flat fee matters more than the bonus when subjects
choose between contracts, corroborating the model’s first lesson. However, whereas the
model implies that the marginal rate of substitution between the flat fee and the bonus
is linear—and, hence, independent of the level of the flat fee—, our results suggest that
it is decreasing: lower flat fees require progressively higher bonuses. Given the resource
constraint, this implies that subjects shy away from a contract that compensates them poorly
if they do not complete the task, even if the contract compensates them generously if they
do.

Our results also suggest that subjects allocate more time to contracts with a higher
bonus, consistent with the model’s second lesson. Surprisingly, however, they also imply
that subjects also care about the contract’s overall attractiveness when allocating time and,
hence, about its flat fee. In fact, our subjects allocate more time, on average, to the contract
they chose in a pair, even when this contract has a lower bonus. We call this tendency
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the “attractiveness bias” because allocating more time to the contract one deems more
“attractive” in choice can lead to a sub-optimal time allocation. Subjects’ choices and time
allocations between the baseline and one of the dominated contracts provide the clearest
evidence for this type of behavior: over 95 percent of subjects choose the baseline over the
dominated contract, as the model predicts, but only 11 percent of the subjects allocate more
time to the dominated contract, even though it has a higher bonus.

These results imply that the trade-off implied by the model’s third lesson is less pro-
nounced than expected (although it exists). In fact, our results imply that the Principal
should not offer contracts with a flat fee that is too low, even if the goal is to attract an
Agent’s time. Although decreasing a contract’s flat fee allows the Principal to increase the
bonus while satisfying her resource constraint, the more she decreases the flat fee, the less
attractive the contract becomes. This hinders its performance in both contract-choice (as
expected) and (surprisingly) contract-time allocation due to the attractiveness bias. There-
fore, the vital tension for a Principal designing bonus-based contracts subject to a cost
constraint is deciding how much to lower the contract’s flat fee to increase its bonus while
ensuring that its flat fee is not too low.

Regarding what types of contracts are more likely to succeed in the contract choice
and time allocation, we find that confidence contracts fare better on average than the other
contracts in both cases. In particular, they fare better than risk contracts, which suggests
that manipulating soft incentives, i.e., increasing the spread in beliefs, is more effective than
manipulating hard incentives, i.e., increasing the spread in payoffs. In contract-choice, this
is due to our subjects being both overconfident and risk-averse. In contract-time allocation,
this is due both to their higher bonuses and attractiveness in choice.

Finally, as a byproduct of our design, we test how well the model accounts for our sub-
ject’s behavior. Overall, 62 percent of the model’s predictions are correct, so the model
fares well on average. However, the model’s average degree of success masks considerable
heterogeneity across subjects and predictions. The model’s success in predicting the be-
havior of individual subjects ranges from 18 to 88 percent (median: 63 percent), whereas
its success across predictions ranges from 11 to 96 percent (median: 63 percent). When
we split the predictions between choice and time predictions, the model gets 65.5 percent
of choice predictions and 59.4 of time predictions correct. Although this might suggest
that the model performs equally well in describing subjects’ choices and time allocations,
they hide a meaningful difference at the individual level. Only 29 of our 90 subjects adhere
to the model’s choice predictions more frequently than its time predictions. This is to be
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expected, given that some of the model’s time predictions would still hold for a broad class
of preferences over contracts. In contrast, its choice predictions rely on the preferences we
use.

The remainder of the paper is structured as follows. Section 2 discusses the related
literature. Section 3 introduces the model we used to design the experiment and make
predictions. Section 4 describes our experimental design. In Section 5, we state and discuss
our results. Section 6 summarizes the paper’s main takeaways.

2 Literature Review
This paper relates to four literature strands: attention/time allocation, choice between con-
tracts, multitasking in contract theory, and non-exclusive contracting in contract theory.

Time/Effort Allocation The classic study of (static) time allocation is Becker (1965),
where time is introduced as a scarce input to the household’s optimization problem. Closer
to what we do, Burmeister-Lamp et al. (2012) examine agents who allocate their time be-
tween a wage job (their “day job”) and a new (risky) enterprise, which corresponds to the
time allocation between the baseline and the risk contracts in our setup. Burmeister-Lamp
et al. (2012) find that entrepreneurs’ risk attitudes do not reliably predict their actual time
allocation, which contradicts their theoretical results. In contrast, our model predicts risk
attitudes should not affect time allocations. Other papers compare the effectiveness of dif-
ferent contracts in incentivizing effort provision. Although most of these papers investigate
piece-rate contracts (e.g., Gneezy and Rustichini (2000)), some papers study non-linear
contracts such as the one we study in this paper. For instance, Fehr et al. (2007) show
that exclusive contracts that pay a non-enforceable bonus conditional on performance out-
perform contract theory’s optimal contract in incentivizing effort provision. Although our
contracts can be interpreted as paying a flat fee plus a bonus conditional on performance,
the bonus is enforceable. Moreover, the critical feature of our contracts is that they are not

exclusive.

Choice Between Contracts Sinander (2024) proposes a behavioral notion of (relative)
overconfidence and axiomatizes what he calls Moral Hazard preferences, i.e., the prefer-
ences over contracts of the agent in the canonical Moral Hazard problem. Our preferences
over contracts can be interpreted as a particular case of his preferences when exerting effort
is costless, and our notion of (relative) over-confidence agrees with his proposed notion of
(relative) over-confidence when restricted to the contracts we use. Experimentally, some
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papers investigate the choice between contracts, but most of the literature (see, for example,
Cadsby et al. (2007), Eriksson and Villeval (2008) and Dohmen and Falk (2011)) focuses
on the choice between fixed-payment contracts versus contracts that reward the agent con-
ditional on performance. They find that more productive subjects choose contracts that pay
conditional on performance over fixed-payment contracts. In contrast, we study the choice
between a specific type of performance-based contract.

Multitask Contract Theory Dewatripont et al. (2000) reviews the literature on multitask
contract theory, where a principal has to incentivize the agent to execute multiple tasks.
The classic paper in this literature is Holmstrom and Milgrom (1991). Analogously to
what happens to time allocation in our paper, the agent in this literature allocates effort to
different tasks, and, hence, encouraging effort in one task can crowd out the effort on the
other task, which is known as effort substitution. Whereas this literature studies a single
principal designing a contract to incentivize the agent to exert effort on the different tasks,
our goal is to design a contract that can attract the agent’s time to one task at the expense
of the other.

Nonexclusive Contract Theory Several papers examine the implications of non-exclusive
contracts in different markets (e.g., Ales and Maziero (2016) and Attar et al. (2011)) and
optimal contracting in non-exclusive relationships (e.g., Bisin and Guaitoli (2004) and At-
tar et al. (2014)). When there are multiple principals, the phenomenon of effort substitution
encourages principals to vie for the agent’s attention, which can lead to exclusivity, i.e., the
agent engages with only one principal’s task (see, for example, Martimort (1996), Dixit
(1998) and Bernheim and Whinston (1998)). While we have “effort” (i.e., time) substi-
tution in our setup, our model predicts that the agent will allocate time to both projects
whenever there are decreasing returns to the time allocated to a task. Consistent with this
prediction, most of our subjects allocate time to both tasks.

3 Model and Predictions
This section presents the model we use to predict how subjects choose between and allocate
time across two contracts. We then highlight the key factors the model predicts should drive
choice and time allocation, introduce the types of contracts we study, and state the model’s
specific predictions about choice and time allocation in the pairs of contracts we consider.
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3.1 Environment
Our contracts specify how an agent will be paid to solve a task by a deadline. Therefore, our
contracts are compensation schemes.2 If the Agent successfully completes the task by the
deadline, she receives a high prize H with probability pS or a low prize L with probability
1− pS , where L < H . If she fails the task, she receives H with probability pF and L with
probability 1− pF , where pF < pS .

Utility of a Contract To evaluate a contract, the Agent must form beliefs about the task’s
difficulty. Our contracts inform the Agent of the fraction α ∈ [0, 1] of people who could
solve the task by the given deadline. We call such α the completion rate, and it proxies the
difficulty of a task. Therefore, the vector (H,L, α, pS, pF , t) describes a contract L . We
denote the set of these contracts by L. Figure 1 graphically represents a contract L ∈ L.

Agent

Success Failure

Nature

H

pS

L

1− pS

Nature

H

pF

L

1− pF

Figure 1: Graphical Representation of a Contract

We assume that the Agent is a (subjective) expected utility maximizer, which, upon
learning the difficulty α of the task and the amount of time she has to solve it, updates her
beliefs about her probability of solving the task and uses this updated belief to calculate the
expected utility of the contract.3 Formally, the agent evaluates a contract L ∈ L by a utility

2 In the experiment, the task is solving a maze in a given amount of time.
3 For each α, this evaluation formula for contracts is a particular case of the preferences of an agent in the

canonical moral hazard problem when contracts only have two outputs, time is replaced by effort, and the
cost of effort is zero. See Sinander (2024).
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function U : L→ R defined as

U(L) := p(α, t) (pSu(H) + (1− pS)u(L)) + (1− p(α, t)) (pFu(H) + (1− pF )u(L)) ,

(1)
where u : R → R is a strictly increasing (Bernoulli) utility function and p(α, t) is the
Agent’s belief that she will solve the task in, at most, t units of time given that a fraction α
of people have done so.

Choice Between Contracts When choosing between two contracts in a pair, say L1 and
L2, the Agent maximizes U . Hence, for i ∈ {1, 2}, she chooses Li from the menu {L1,L2}
if and only if U(Li) > max{U(L1), U(L2)}.

Time Allocation Across Contracts When allocating time across two contracts, the Agent
allocates a budget of T units of time between the two contracts’ underlying tasks to maxi-
mize the sum of the contracts’ expected utilities.

To state the Agent’s optimization problem, let Lt? be the contract with the same char-
acteristics as L, except for the deadline, now given by t?.4 For each t > 0, define the
time-conditional utility function U(·|t) : L→ R be U(L|t) := U(Lt).

Given two contracts L1 and L2, suppose that the Agent allocates t minutes to L1, and
T − t to L2. She will then engage in the contracts (L1)t and (L2)T−t, which she evaluates
by U(L1|t) and U(L2|T − t). We assume that the Agent allocates time by solving

max
t∈[0,T ]

[U(L1|t) + U(L2|T − t)] . (2)

We further assume that, for all α ∈ [0, 1],

1. p(α, 0) = 0;

2. p(α, ·) is increasing, concave, and continuously differentiable.5

The concavity of p(α, ·) means decreasing returns to time allocated to a task.

3.2 Bonus, choice, and time allocation
To derive predictions about choice and time allocation, define, for every L ∈ L,

4 The completion rate α still gives the fraction of people that successfully completed the task when the
deadline was t.

5 If p were linear or convex, the solution of the optimization problem (2) would be to allocate T to the
same contract that would receive more time if p was concave.
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ULS := pSu(H) + (1− pS)u(L)

ULF := pFu(H) + (1− pF )u(L)

∆L := ULS − ULF = (pS − pF )(u(H)− u(L))

.

ULS is the expected value of the lottery the Agent gets if she succeeds in solving the task,
and ULF is the expected value of the lottery the Agent gets if she fails to solve the task. We
refer to ULS as the contract’s success payoff and ULF as its (expected) flat fee. Finally, we
say that ∆L is the (expected) bonus of L. Given the Agent’s utility function over contracts,
∆L decomposes into (pS− pF ), the spread in probabilities, and (u(H)−u(L)), the spread

in prizes.
As we now show, although a contract’s bonus influences both choice and time alloca-

tion, the model predicts that the difference in flat fees matters for choice independently of
its impact on the bonus. In contrast, it matters for time allocation only through its effect on
the bonus. This can create a wedge between choice and time allocation predictions because
the model can predict that the Agent should choose one contract over the other but allocate
more time to the contract that is not chosen.

Choice Prediction Recall that given two contracts, L1 and L2, L1 should be chosen from
{L1,L2} if and only if U(Li) > max{U(L1), U(L2)}. Substituting the evaluation formula
(1) in this expression and manipulating, we get that L1 is chosen from {L1,L2} if and only
if

p(α1, t1)∆L1 − p(α2, t2)∆L2 > UL2F − U
L1
F .

Assuming, as is the case for most choices in our experiment, that α1 = α2 = α and that
t1 = t2 = t, L1 is chosen from {L1,L2} if and only if

p(α, t)(∆L1 −∆L2) +
(
UL1F − U

L2
F

)
> 0 (3)

The inequality (3) implies that choice depends on the agent’s beliefs and two contractual
features: the difference in the contracts’ bonuses and their flat fees. Since the marginal
utility of increasing the flat fee is 1, whereas the marginal utility of increasing the bonus is
p(α, t), we get to the model’s first insight:

Lesson 1 When the Agent chooses between contracts, increasing the flat fee makes a con-

tract more attractive than increasing its bonus.
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Time Prediction Solving 2 implies that the time tL1 allocated to contract L1 must satisfy:

p′(α2, T − tL1)
p′(α1, tL1)

=
∆L1
∆L2

,

where p′(αi, ·) is the derivative of p with respect to time. Given our assumption that p is
concave, the mapping t 7→ p′(α2,T−t)

p′(α1,t)
is non-decreasing. Therefore, tL1 is a non-decreasing

function of the ratio of the bonuses of L1 and L2, i.e., the higher ∆L1

∆L2
is, the higher tL1 will

be. In particular, if both tasks are equally difficult (if α1 = α2 = α), then the contract with
a higher bonus will receive more than T

2
, hence more time than the other contract.

Lesson 2 In two contracts with the same completion rate, the only contractual feature that

matters for attracting time is the size of the bonus.

The expected cost of a contract L for a risk-neutral principal is

EC(L) := α(pS ×H + (1− pS)× L) + (1− α)(pF ×H + (1− pF )× L). (4)

Assume now that the principal is designing the contract under the constraint that EC(L) 6

B, for some B > 0. Note that

EC(L) = [α(pS − pF ) + pF ] (H − L) + L. (5)

This implies that if the constraint is binding and the Principal wishes to increase a contract’s
bonus, either by increasing H − L or pS − pF , she must decrease its flat fee, either by
decreasing pF or L, and vice-versa. Therefore, Lessons 1 and 2 now imply:

Lesson 3 When the Principal is resource-constrained, she faces a trade-off. Designing a

contract that is more effective in contract-choice makes it less effective in contract-time

allocation, and vice-versa.

3.3 Contract Types
We now introduce the types of pairs of contracts in the experiment and state the model’s
choice and time allocation predictions for these types. For an explicit derivation and de-
tailed discussion of these predictions, see Appendix A.

The pairs of contracts in the experiment consist of a baseline contract, such as the one
in Table 1, paired with eight other contracts derived from the baseline by making controlled

11



changes to its characteristics. We consider four different types of controlled changes, which
induce four different types of contracts: confidence (C), risk (R), dominated (D), and
ambiguous (A).

Table 1: Characteristics of LB

Characteristics Value
High Prize HB

Low Prize LB
Completion rate αB

Probability High Prize — Solve pBS
Probability High Prize — Not Solve pBF

3.3.1 Confidence Contracts

A confidence contract LC has the same prizes, completion rate, and deadline as LB, but
the probability of getting the high prize if the Agent succeeds in the task is greater than the
corresponding probability in LB, whereas the probability of winning the high prize if the
Agent fails in the task is lower than the corresponding probability in LB.

Formally, LC is a confidence contract if HC = HB, LC = LB, αC = αB and

pCF < pBF < pBS < pCS and pBF + pBS = pCS + pCF .

Intuitively, a confident agent, that is, one who believes that she is very likely to succeed
in the task, will choose this contract over the baseline contract because the probability of
getting H if she succeeds in the task is higher than in the baseline. However, given the
increase in the spread in probabilities, the model predicts that confidence contracts should
always attract more time.

3.3.2 Risk Contracts

A risk contract LR has the same probabilities, completion rate, and deadline as the baseline
contract LB, but its high prize is greater than the high prize of LB, whereas its low prize is
smaller than the low prize of LB. Moreover, the average of the high and low prizes in LB
and LR are the same. Formally, LR is a risk contract if pRS = pBS , pRF = pBF , αR = αB , and

LR < LB < HB < HR and LR +HR = LB +HB.
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Intuitively, risk contracts are appealing to risk-seeking agents. However, as we show in
Section 3.4.2), how confident the Agent is (i.e., the value of p(α, t)) also influences the
choice between a risk contract and the baseline. However, given the increase in the spread
in probabilities, the model predicts that risk contracts should always attract more time.

3.3.3 Dominated Contracts

A dominated contract LD has the same prizes, completion rate, and deadline as LB, but
both probabilities of winning the high prize are lower than those in LB. Formally, HD =

HB, LD = LB, αD = αB, but

pDS < pBS and pDF < pBF .

An agent should always choose the baseline contract over a dominated one. Time allo-
cation, however, depends on the ratio of bonuses. Therefore, dominated contracts allow us
to test whether the Agent understands the relevance of the bonus when allocating time. In
particular, do subjects know that an attractive contract in choice should sometimes receive
less time than a more attractive one?

3.3.4 Ambiguous Contracts

An ambiguous contract has the same prizes, probabilities of getting the high prize, and
deadline as LB, but the completion rate is ambiguous because the Agent does not know the
exact value of the completion rate. Formally, HA = HB, LA = LB, pAS = pBS , pAF = pBF ,
but, for some ε > 0,

αA ∈ [αB − ε, αB + ε].

Intuitively, the choice between an ambiguous contract and the baseline depends on the
Agent’s ambiguity attitude. That is, ambiguity-averse agents should choose the baseline
over an ambiguous contract, whereas ambiguity-seeking agents should do the opposite.

3.4 Predictions
We now state the model’s choice and time allocation predictions between the types of pairs
we use in the experiment.

3.4.1 Confidence Contracts

Prediction 1 (Choice C) An agent should choose the confidence contract over the baseline

one if and only if p(α, t) > α, i.e., if she believes that her probability of solving the task
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is higher than the probability of a randomly selected person in the population solving the

task.6

Prediction 2 (Time C) An agent should allocate more time to a confidence contract than

to the baseline one.

Prediction 3 (Time Cr) The amount of time allocated to a confidence contract increases

as pCS − pCF increases.

3.4.2 Risk Contracts

Prediction 4 (Choice R)

1. If an agent is sufficiently risk-loving, she will choose the risk contract.

2. If an agent is sufficiently risk-averse, she will choose the baseline one.

3. For intermediate levels of risk aversion, the choice depends on the Agent’s confi-

dence. Specifically, given a level of risk aversion, only sufficiently confident subjects

will choose the risky contract over the baseline one.7

Prediction 5 (Time R) An agent should allocate more time to a risk contract than the

baseline one.

Prediction 6 (Time Rr) The amount of time allocated to the risk contract increases as

HR − LR increases.

3.4.3 Dominated Contracts

Prediction 7 (Choice D) The Agent should always choose the baseline contract over a

dominated one.

Prediction 8 (Time D) When pDS − pDF > pBS − pBF , the Agent should allocate more time to

LD. When pDS − pDF < pBS − pBF , the Agent should allocate more time to LB.

Prediction 9 (Time Dr) The amount of time allocated to a dominated contract increases

as pDS − pDF increases.

6 We interpret the condition p(α, t) > α as saying that the agent is over-confident at completion rate α,
where we use over-confidence in the sense of over-placement.

7 See Appendix A for a derivation of the model’s formal prediction.
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3.4.4 Ambiguous Contracts

To make predictions about ambiguous contracts, we must make assumptions about how the
Agent resolves the uncertainty about αA. We assume that the Agent reduces ambiguity to
risk by taking the completion rate of an ambiguous contract as the convex combination of
the endpoints of the interval specified in the ambiguous contract, where the weights she
assigns to the endpoints measure her ambiguity attitude. 8

Prediction 10 (Choice A) Assuming that p(·, t) is increasing given the deadline t, the

Agent should choose the baseline contract over the ambiguous one if and only if she is

ambiguity averse.

Since time predictions about ambiguous contracts require assumptions about the cross-
derivative of the belief function with respect to time and the completion rate, we refrain
from making time predictions for ambiguous contracts and let the experimental results
inform us about subjects’ time allocation when facing such contracts.

4 Experimental Design
The experiment consisted of three parts. In Part I, subjects chose a contract from pairs
of contracts, where each contract in a pair had a 60-second deadline. In Part II, subjects
revisited the same pairs of contracts, but now they had 120 seconds to allocate across the
contracts in a pair. In Part III, we elicit those subjects’ characteristics required to test the
model. At the end of the experiment, subjects had to solve three mazes to determine how
much they won. We explain how we selected the three mazes when discussing the subjects’
payoffs below.

The task associated with each contract is to solve a maze with a completion rate α.9

An important aspect of the design is that subjects only saw the mazes associated with the
contracts after Parts I, II, and III were completed. Therefore, the contract’s completion
rate was the only information they had about the difficulty of a maze when choosing and
allocating time.

Table 2 displays the contracts we used in the experiment. LB acted as the baseline con-
tract. We then generated two contracts for each type of contract described in Section 3.3:

8 See Appendix A for the formal model the agent uses to resolve the uncertainty about the completion
rate.

9 More precisely, the completion rate was the fraction of a pool of undergraduate students that could solve
the maze in, at most, 60 seconds.See Appendix B.1 for details on the procedure to generate and calibrate the
mazes.
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two confidence contracts (LC1 and LC2), two risk contracts (LR1 and LR2), two dominated
contracts (LD1 and LD2), and two ambiguous contracts (LA1 and LA2). Therefore, subjects
had to choose and allocate time in 8 pairs of contracts composed of LB and each one of
these eight derived contracts.

A key feature of the contracts in Table 2 is that their expected cost for a risk and
ambiguity-neutral principle is, at most, that of the baseline contract. That is, we take the
expected cost of the baseline contract as the Principal’s resource constraint. Without this
constraint, the principal could easily compete against the baseline by offering a contract
with higher prizes or higher probabilities of getting the high prize than the baseline.

Contract LB LC1 LC2 LR1 LR2 LD1 LD2 LA1 LA2

High Prize $8 $8 $8 $10 $12 $8 $8 $8 $8
Low Prize $4 $4 $4 $2 $0 $4 $4 $4 $4
Completion Rate .5 .5 .5 .5 .5 .5 .5 [.4, .6] [0,1]
High Prize | Complete .6 .8 1 .6 .6 .1 .3 .6 .6
High Prize | Not .4 .2 0 .4 .4 0 0 .4 .4
Expected Value 6 6 6 6 6 4.4 4.6 6 6

Table 2: List of Contracts in the Experiment

4.1 Part I: Choosing Between Contracts
In Part I, we informed subjects that each contract’s deadline was 60 seconds. Therefore, if
they choose a contract from a pair and the pair is selected for payment, they would have
60 seconds to solve L’s associated maze. For each pair of contracts, subjects had to either
choose one contract in the pair or declare they were indifferent between them. Therefore,
subjects effectively chose (i) the baseline contract, (ii) the alternative contract, or (iii) or
declared they were indifferent between the two.

Figure 2 displays an example of the sample screen in Part I. For each pair of contracts,
the subjects stated their choices by clicking the button with the contract’s label they pre-
ferred or by clicking the ‘Either V or W’ button if they were indifferent. We randomized
the order in which the eight pairs of contracts were presented to a subject and the order in
which the contracts in a pair were displayed on the screen (i.e., either on the left or on the
right).

The subjects did not receive any feedback between choices, nor did they see the mazes
associated with each contract. They were told that at the end of the experiment, i.e., after
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Figure 2: Sample Screen from Part I

completing Parts I, II, and III, one of the pairs in Part I would be randomly selected for
payment, and they would then get to solve the maze associated with the contract they chose
from the pair in at most 60 seconds. If a subject clicked on ‘Either V or W,’ we randomly
selected a contract and, hence, the maze the subject had to solve.

4.2 Part II: Allocating Time Between Contracts
After completing Part I, subjects proceeded to Part II. In Part II, we presented subjects with
the same eight pairs of contracts and asked them to state how much of 120 seconds they
would allocate between the contracts (the mazes associated with the contracts). Figure 2
displays a sample screen presented to subjects in Part II.

Subjects had to input an integer in the corresponding field to indicate how many seconds
they wanted to allocate to each option. If a subject stated that she would allocate 40 seconds
to Option V, the software automatically assigned 80 seconds to Option W. In this way, we
ensured that subjects exhausted their time budget.

Similarly to Part I, we randomized the order in which the eight pairs of contracts were
presented to a subject and the order in which the contracts in a pair were displayed on the
screen (i.e., either on the left or on the right).

Subjects did not receive feedback between time allocation decisions or see the mazes
associated with each contract. They were told that one of the pairs in Part II would be
randomly selected for payment at the end of the experiment, i.e., after completing Parts I,
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Figure 3: Sample Screen from Part 2

II, and III. They would then get to solve the two mazes associated with the selected pair of
contracts under the time allocation they stated for that pair.

4.3 Part III: Eliciting Subjects’ Characteristics
In Part III, subjects faced eight different elicitation tasks. The tasks elicited the character-
istics required to test the model’s predictions: confidence, risk, and ambiguity attitudes.
Importantly, we pay subjects in these tasks so that if they behave as the model prescribes,
the elicitation tasks we use can be shown to be incentive compatible. We also elicited other
characteristics, e.g., attitudes toward reducing compound lotteries and alternative measures
of confidence and risk attitudes. See Appendix B.2 for further details.

4.4 Payoffs
A subject’s payoff in the experiment was the sum of her payoffs in three tasks, each ran-
domly drawn from one of the Parts of the experiment. In the randomly drawn task from
Part I, the subject had 60 seconds to solve the maze associated with the contract she chose.
The subjects’ payoff in this task was the outcome of playing the lottery, which the contract
specifies, given their success or failure in solving the maze.

In the randomly drawn task from Part II, the subject had to solve the mazes associated
with both contracts in the pair under the time allocation she stated. The subjects’ payoff in
this task was the sum of the outcomes of the two lotteries the contracts specify, given their
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success or failure in solving the mazes.
In the randomly drawn task from Part III, the subjects’ payoffs were a function of

the randomly chosen elicitation task. We discuss the payoffs of each elicitation task in
Appendix B.2.

4.5 Implementation
The experiment was conducted at the Center for Experimental Social Science (CESS) lab-
oratory at New York University, using oTree (Chen et al. (2016)) during February and
March of 2020. We conducted four sessions, with 99 participants recruited from the gen-
eral population of NYU students using hroot (Bock et al. (2014)).10 The experiment lasted
approximately 60 minutes, and average earnings, including a $10 show-up fee, were $31
and ranged from $18 to $46.

5 Results
We now proceed to the experiment’s results and what they imply about Lessons 1, 2, and
3. We then study how effective the types of contracts we consider are against the baseline
contract. Finally, we study how well the standard model of choice and time allocation that
we used to design the experiment can account for our subjects’ behavior.

5.1 The Three Lessons and Their Implications to Contract Design
Lesson 1: Flat Fees are Important in Contract-Choice. Table 3 summarizes choices in
the experiment. For each pair of contracts, it displays the percentages of subjects who chose
the baseline contract (LB), who were indifferent (‘Indifferent’), and who chose the other
contract in a pair (Not LB). Consider first the case of dominated contracts. Here things
go as expected. The baseline contract should dominate these contracts in contract-choice.
Both LD1’s flat fee and bonus are lower than those of LB. Moreover, although LD2’s bonus
is higher than that of LB, its flat fee is so low relative to LB’s that it is still dominated by
LB. Incidentally, only a few subjects chose a dominated contract over the baseline, which
suggests that our subjects reacted to the contractual incentives.

Consider now confidence contracts. Most subjects choose LC1 over LB, whereas sub-
jects are split between LB and LC2 . This suggests that whereas some subjects are willing
to accept LC1’s lower flat fee for its higher bonus, they no longer do so for LC2 . We con-
jecture that this is so because they judge LC2’s flat fee as “too” low— getting the low prize

10 For the first session, we do not have subjects’ choices and time allocations in the pair (LB ,LC2
).
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Table 3: Choice and time allocation to contract pairs

Pairs
Choice (percentage)

LB Indifferent Not LB
LB vs LC1 17.2 8.1 74.7
LB vs LC2 43.5 11.6 44.9
LB vs LR1 35.4 12.1 52.5
LB vs LR2 50.5 6.1 43.4
LB vs LD1 92.9 3.0 4.0
LB vs LD2 96.0 1.0 3.0
LB vs LA1 34.3 30.3 35.4
LB vs LA2 54.5 19.2 26.3

for sure—compared to that of LB, which still offers a 40% chance of getting the high prize.
However, the model predicts that a subject should choose LC1 over LB if and only if the
subject chooses LC2 over LB . These results suggest that the flat fee indeed matters but that
the model underestimates the importance of flat fees when they are “too” low.

Consider now risk contracts. Most of our subjects prefer LR1 to LB but prefer LB to
LR2 . Again, the issue is similar to the one with confidence contracts: whereas subjects are
willing to trade-off LR1’s lower flat fee for its higher bonus relative to LB, LR2’s flat fee
is considered too low, and hence, its higher bonus relative to LB does not compensate for
it. Curiously, contrary to the case of confidence contracts, the model is more successful
in predicting choice on the pair LR2 and LB than on LB to LR1 . This is so because the
model predicts that most of our subjects should choose LB over LR1 and LR2 . This indeed
happens for LR2 , but not for LR1 . Therefore, in this case, the model overestimates the
importance of flat fees when they are not “too” low.

Finally, consider ambiguous contracts. When ambiguity is low, as in the case of LA1 ,
roughly a third of the subjects choose LB, the other third chooses LA1 , and the remaining
third declares indifference. However, as soon as ambiguity increases, as in the case of
LA2most subjects choose LB. The problem seems to be that although these contracts have
the same flat fee and bonus, the weight subjects assign to each depends on how ambiguous
the contract is. When ambiguity increases, subjects become worried that the task will be
too hard (i.e., α will be too low). In this case, they will be more likely to only get the flat
fee, but not the bonus. Therefore, they prefer to go with the contract with a task of known
difficulty.
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These results suggest that flat fees indeed matter for choice, consistent with Lesson 1.
However, our model implies that a subject’s marginal rate of substitution between the flat
fee and the bonus is constant. In contrast, our results suggest that it is decreasing: the lower
the flat fee, the higher the bonus required to compensate for it.

Lesson 2: Bonuses and Contract Time Allocation Table ?? summarizes time alloca-
tions in the experiment. It displays the average time subjects allocate to the baseline (LB)
and the other contract in the pair (Not LB). Risk and confidence contracts have a higher
bonus than the baseline contract, and correspondingly, they receive more time, on average,
than the baseline contract. However, LC2 is not much more effective on average than LC1

in attracting time over LB, although the bonus of LC2 is 5 times that of LB, whereas that
of LC1 is 3 times. In fact, the difference in the averages displayed in the table is not statis-
tically significant. Similarly, LR1 and LR2 are equally effective in attracting time, although
the bonus of LR2 is 3 times that of LB, whereas that of LC1 is 2 times.

Time allocation between the baseline and dominated contracts is even more puzzling.
Although the bonus of LB is “only” two times that of LD1 , the difference in time allocated
to LB and LD1 is the largest in the pairs we consider, namely 38.8 seconds in favor of LB .
To put things into perspective, the bonus of LC2 is five times that of LB , but the difference
in the time allocated to LC2 and LB is “only” 22.8 seconds in favor of LC2 . Finally, and
surprisingly, although LD2 has a higher bonus than LB, LB attracts significantly more time
than LD2 .

Table 4: Choice and time allocation to contract pairs

Pairs
Time (seconds)

LB Not LB
LB vs LC1 52.0 68.0
LB vs LC2 48.6 71.4
LB vs LR1 54.0 66.0
LB vs LR2 54.9 65.1
LB vs LD1 79.4 40.6
LB vs LD2 73.5 46.5
LB vs LA1 60.3 59.7
LB vs LA2 63.3 56.7

To further investigate the relevance of bonuses to time allocation, we ran the following
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regression:

ti(LB ,LX) = β0 + β1

(
∆i
LB

∆i
LX
− 1

)
,

where for each subject i and X ∈ {C1, C2, R1, R2, D1, D2},11 ti(LB ,LX) is the amount

of time subject i allocates to contract LB in the pair (LB,LX), and
(

∆Li
B

∆Li
X

− 1

)
is the

normalized ratio of bonuses for subject i.
For each pair (LB,LX), when the normalized ratio of bonuses is 0 for subject i, that is,

when ∆i
LB =∆i

LX , the model predicts that the subject should allocate the same amount of
time to LB and LX . Therefore, if the model is correct (on average), we expect β0 = 60.
The model also predicts that β1 > 0 .

Table 5 displays the results of the regression. Consistent with the model, β1 = 10.77 >

0, which means that if the bonus of LB is twice that of LX , subjects allocate roughly 11

more seconds to LB. This suggests that subjects understand the importance of bonuses for
time allocation. However, the magnitude of β0 = 65.64, which is statistically different
from 60, is puzzling given that the model predicts that the baseline contract should receive
less than 60 seconds in five out of the six pairs of contracts included in the regression.

Table 5: Time Allocation and Bonuses

Coefficient Robust Std. Err. p-value

β0 65.64 1.37 0.00
β1 10.77 2.47 0.00

What explains the magnitude of β0? The pair of contracts LB and LD2 suggests that
instead of basing their time allocation exclusively on the ratio of bonuses, subjects are
allocating more time to the contract they would choose in a pair and, hence, find more
attractive. If this is true, our previous discussion about the relevance of flat fees for choice
implies that flat fees also matter for time allocation.

We call this pattern the attractiveness bias and conjecture that it is a particular case of a
process Kahneman et al. (2002) named attribute substitution. When asked how they want
to allocate their time between two contracts, a question some subjects might deem complex,
they substitute it with the more straightforward question of what contract they find more
attractive (and, hence, would choose). They then instinctively allocate more time to the

11 These are the pairs for which the model makes predictions about time allocation.
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more attractive contract but adjust this instinctive reaction using the contracts’ bonuses.
To test whether the data supports the attractiveness bias, we ran a modified version of

our first regression, where we condition time allocation on the contract the subjects chose
in each pair:

ti(LB ,LX) =
∑

k∈{B,X,Indiff}

1i{Choice(LB,LX )=Lk}

[
βk0 + βk1

(
∆i
LB

∆i
LX
− 1

)]
,

where for each subject i and X ∈ {C1, C2, R1, R2, D1, D2}, ti(LB ,LX) is the amount of time

subject i allocates to contract LB in the pair (LB,LX),
(

∆i
LB

∆Li
X

− 1

)
is the normalized ratio

of bonuses, and 1i{Choice(LB,LX )=Lk} is an indicator variable that, for each k ∈ {B,X, Indiff}
, takes value 1 when subject i chooses Lk, and 0 otherwise.

Running this regression is equivalent to running three separate regressions: one for the
observations where subjects chose the baseline contract, one for the observations where
subjects chose the other contract, and one for the observations where subjects declared in-
difference between the contracts. For each case, we run a simple linear regression between
the time allocated to the baseline in a pair and the normalized ratio of bonuses. For each
pair (LB,LX) and each k ∈ {B,X, Indiff} , the model again implies that βk0 = 60 and
βk1 > 0.

Table 6 displays the results of the regression. On average, subjects that choose LB
allocate more time to it than the model predicts they should when the contracts have the
same bonus (βB0 = 70.57). Similarly, on average, subjects that choose LX allocate more
time to it than the model predicts when the contracts have the same bonuses (βX0 = 50.6).
Finally, subjects that declare indifference allocate roughly the same amount of time to both
contracts (βIndiff

0 = 57.73). Therefore, subjects allocate, on average, more time to the
contract that attracts them when choosing.

When choosing the baseline contract or declaring indifference, subjects react to the
increase in the ratio of bonuses as predicted by the model (βB1 = 12.35 and βIndiff

1 = 5.31

are statistically significant) but not when choosing the other contract in the pair (βX1 is not
statistically significant).

Lesson 3: The Trade-Off and Implications to Contract Design The attractiveness bias
can account for the time allocation results that are at odds with the model’s predictions.
As discussed in detail in the next section, it explains why the baseline contract effectively
attracts time over dominated contracts, even when the model predicts it should not. It
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Coefficient Robust Std. Err. p-value

βk0
Choose B (k = B) 70.57 1.62 0.00
Indifference (k = Indiff) 57.73 3.83 0.00
Choose Other (k = X) 50.60 1.91 0.00

βk1
Choose B (k = B) 12.35 1.70 0.00
Indifference (k = Indiff) 5.31 2.58 0.04
Choose Other (k = X) -1.26 1.38 0.36

Table 6: The Attractiveness Bias

also explains why the two confidence (risk) contracts are almost as effective: LC1 (LR1

) is more attractive in choice than LC2 (LR2 ). More importantly, the attractiveness bias
qualifies Lesson 3. That is, it reduces the trade-off a resource-constrained Principal faces
in designing contracts. Contracts LC1 and LR1 perform well both in contract-choice and
contract-time allocation.

Therefore, our experimental results suggest that when a resource-constrained Principal
designs contracts, she must ensure that the flat fee is not too low because subjects find
contracts with low flat fees unattractive when choosing. By the attractiveness bias, low flat
fees will also affect the contract’s effectiveness in attracting time. Finally, once the princi-
pal allocates enough resources to increase the flat fee, the remaining resources should go
into increasing the bonus because, as we have seen, our subjects react to it when allocating
time.

5.2 The Effectiveness of The Different Types of Contracts
We now explore how effective the four types of contracts are in competing against the
baseline contract. Table 7 joins the information in Tables 3 and Table 4. Recall that the
contracts we used in the experiment are derived from the baseline by varying some of its
parameters while ensuring that their expected cost is, at most, that of the baseline.

How effective are contracts that increase the probability spread while keeping expected
costs constant? That is, how effective are confidence contracts? Table 7 shows that confi-
dence contracts are effective in contract-choice. However, as argued above, their effective-
ness decreases if we increase the spread in probabilities too much by reducing their flat fee.
Whereas three out of four subjects choose LC1 over LB, less than two out of four subjects
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Table 7: Choice and time allocation to contract pairs

Pairs Choice (percentage) Time (seconds)

LB Indifferent Not LB LB Not LB
LB vs LC1 17.2 8.1 74.7 52.0 68.0
LB vs LC2 43.5 11.6 44.9 48.6 71.4
LB vs LR1 35.4 12.1 52.5 54.0 66.0
LB vs LR2 50.5 6.1 43.4 54.9 65.1
LB vs LD1 92.9 3.0 4.0 79.4 40.6
LB vs LD2 96.0 1.0 3.0 73.5 46.5
LB vs LA1 34.3 30.3 35.4 60.3 59.7
LB vs LA2 54.5 19.2 26.3 63.3 56.7

choose LC2 over LB.
In time allocation, the average amount of time subjects allocate toLC1 is not statistically

different from the one they allocate to LC2 . The attractiveness bias can account for this
fact. Given that 72.5% of subjects choose LC1 over LB and 44.9% choose LC2 over LB,
the attractiveness bias implies that subjects allocate more time, on average, to LC1 relative
to LB and allocate less time to LC2 relative to LB than the model predicts, making the
average amount of time allocated to LC1 and LC2 closer than what the model predicts.

We reach similar conclusions on the efficacy of spreading prizes while keeping expected
costs constant. 51.7% of subjects chose LR1 over LB, while 36.7% chose LB over LR1 .
In contrast, only 41.7% of our subjects chose LR2 over LB, whereas 51.7% chose LB over
LR2 . This again suggests that subjects shy away from contracts with flat fees that are too
low. In time allocation, although both risky contracts attract more time than the baseline
contract, LR2 attracts, on average, roughly the same amount of time over LB as LR1 over
LB. Once more, the attractiveness bias can explain these results.

Although confidence and risky contracts are both effective in competing against the
baseline for time allocation, Table 7 suggests, and statistical tests corroborate, that con-
fidence contracts attract, on average, more effective than risky ones. This suggests that
influencing soft incentives, i.e., the Agent’s beliefs, is more effective than influencing hard
incentives, both for contract-choice and contract-time allocation.

The model suggests that one way the Principal can compete for people’s time against the
baseline contract at a lower expected cost is to increase the spread in probabilities (pS−pF )
while decreasing the sum of these probabilities (pS + pF ) relative to the baseline contract.
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This is what LD2 does. However, Table 7 shows that it is ineffective in both contract-choice
and contract-time allocation. Once more, the attractiveness bias rationalizes this pattern.
The attractiveness bias also explains why LB attracts much more time than LD1 despite
the ratio of spreads between these contracts being much lower than the ratio of spreads
between LC2 and LB.

How effective are ambiguous contracts? Subjects chose LA1 as often as LB, which
indicates that, on average, subjects are not averse to a small amount of (symmetric) ambi-
guity in the completion rate. However, subjects choose LB twice as often as LA2 , which
suggests that subjects want to avoid the possibility of highly unfavorable outcomes, such
as the completion rate of the ambiguous contract being 0. Interestingly, both ambiguous
contracts attract roughly the same time, on average, as the baseline contract. Therefore,
ambiguity in the completion rate does not seem to affect subjects’ time allocation as much.

5.3 Testing the Model
To assess the model’s performance in the experiment, we introduce the notion of a predic-
tion matrix.

Definition 1 GivenN ∈ N subjects andM ∈ N predictions, a prediction matrix (Pij)
j=1,...,M
i=1,...,N

is a N ×M matrix where

Pij :=


1, j is true of i

0, j is false of i

NA, j does not apply to i

.

A prediction matrix summarizes the model’s performance for each subject and each
prediction. For each subject i and each prediction j, Pij can take one of three values. If
prediction j is correct for subject i, Pij = 1. If prediction j is incorrect for subject i,
Pij = 0. In either of these cases, we say that prediction j is valid for subject i. However, if
prediction j cannot be tested for subject i, either because an assumption is needed to test it
fails or because of missing data, Pij = NA, we say it is invalid (for subject i in prediction
j). For the assumptions each prediction requires to be declared valid, see Appendix A,
particularly Tables 9 to 12.

Given a prediction matrix, we can calculate how well the model describes each sub-
ject’s behavior and its degree of success for each prediction, which leads to the following
definitions.
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Definition 2 The model’s degree of success for subject i? ∈ {1, . . . , N} is defined as

Ci? :=

∑
{j:Pi?j 6=NA} Pi?j

|{j : Pi?j 6= NA}|

Definition 3 The model’s degree of success in prediction j? ∈ {1, . . . ,M} is defined as

Pj? :=

∑
{i:Pij? 6=NA} Pij?

|{j? : Pij? 6= NA}|

The model’s degree of success for subject i measures how well the model describes
the subject i’s behavior in the experiment when we restrict attention to valid predictions.
The model’s degree of success in prediction j is the percentage of subjects that conform to
prediction j when we restrict attention to valid predictions.

Table 8: Summary of Valid Predictions

Prediction Category All Choice Time Choice ND
Degree of success 62.0 65.5 59.4 51.7

Table 8 summarizes model’s degree of success for all predictions. We find that 62%
of all valid predictions are correct. Once we split the predictions between choice and time
allocation predictions, we find that 65.5% of the model’s choice predictions are correct,
whereas 59.4% of its time predictions are correct. However, choice predictions about dom-
inated contracts follow from a simple dominance argument because the baseline contract
awards lotteries that first-order stochastically dominate the lotteries awarded by dominated
contracts no matter whether a subject completes the task. Therefore, any “reasonable”
model of choice between contracts should predict that the agent should choose the baseline
over a dominated contract. This implies that getting these predictions right only provides
weak evidence for the model’s predictive success. Once we exclude the choice predictions
about dominated contracts, we see that 51.7% of choice predictions are correct, suggesting
that the model better predicts time allocations than choice. And indeed, the model predicts
2/3 of our subjects’ time allocations better than their choices.12

12 If instead of ignoring the invalid predictions, we consider them incorrect, we find that 56% of the model’s
predictions are correct. Suppose we further split the predictions between choice and time allocation. In
that case, we find that 52.5% of choice predictions are correct, and if we exclude choice predictions about
dominated contracts, 38% of choice predictions are correct. The percentage of correct time predictions does
not change.
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Figure 4: ECDFs of the Model’s Degree of Success for Subjects by Type of Prediction
(Dominance Excluded)

Figure 4 provides further evidence for this claim. It plots two empirical CDFs (ECDFs).
The first is the ECDF of the model’s degree of success across subjects when we only con-
sider (valid) choice predictions (excluding those about dominated contracts). The second
is the corresponding ECDF for the time predictions. We then see that the second ECDF
“almost” first-order stochastically dominates the first indicating the model’s greater success
in predicting time allocations than choices.

Figure 5 plots the model’s degree of success subject by subject, decomposing its degree
of success in predicting a subject’s choice (circles) (excluding dominated contracts) and
time allocations (triangles). On the x-axis, we ordered subjects by the model’s degree of
success in predicting their choices. There are three points of interest in Figure 5. First, there
is a large degree of heterogeneity in the model’s degree of success across subjects, ranging
from 18% to 88%. Second, although we can again see that the model better accounts
for most subjects’ time allocations than for their choices, there is a significant proportion
of subjects for whom the opposite is true. Third, subjects differ greatly regarding how
frequently they adhere to our model’s choice and time predictions. Looking at Figure 5
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from left to right, we can spot subjects that conform to the model very well in one type of
task but not in the other, and these differences in the model’s performance across tasks can
be sizable.13
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Figure 5: Model’s Success by Subject (Dominance Excluded)

While Figures 4 and 5 look at the model’s performance across subjects, Figure 6 dis-
plays the model’s success across predictions. There is a good deal of heterogeneity here
as well, with the model’s success rate ranging from 11% to 96%. The most successful
predictions are the predictions about choice involving dominated contracts, whereas the
least successful prediction is about the time allocation between the baseline and the sec-
ond dominated contract. Note also that the predictions Time Cr, Time Rr, and Time Dr

are particularly successful, which again suggests that subjects do react to bonuses when
allocating time.

13 Once we exclude predictions about dominated contracts, 9 of our subjects have no valid predictions,
so we exclude them from the graph. Moreover, although invalid predictions in choice (see Appendix A,
particularly A.5) lead to an overestimation of the model’s success in choice, the qualitative results about the
two layers of heterogeneity of the model’s success across subjects would still hold if we only considered
subjects for whom all choice predictions are valid.
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Figure 6: Degree of Success by Prediction

Two reasons account for the model’s higher degree of success in predicting time alloca-
tions. First, as discussed extensively in Appendix A.6, the time allocation predictions about
risk and especially confidence contracts would hold for a broad class of preferences over
contracts. Second, if the elicitation of the characteristics we need for the model’s choice
predictions is subject to measurement error (cf., Gillen et al. (2019)), we might incorrectly
conclude that the model predictions fail. 14

6 Concluding remarks
This paper addresses how people choose and allocate time between bonus-based contracts.
We have seen that a standard choice and time allocation model implies that flat fees are
more important than bonuses for choice and that only bonuses should matter for time allo-

14 For instance, given how we elicit the confidence function when α = 0.5 and t = 60, we might be over-
estimating subjects’ confidence (Benoı̂t et al. (2022)), which can explain why the prediction Choice C2 fails
for more than half of our subjects. However, measurement error provides — at best — a partial explanation
for the model’s failures in predicting choices. For instance, if we ignore indifferences, the model predicts that
a subject chooses LB over LC1

and LC2
or LC1

and LC2
over LB . Although this prediction is unaffected by

measurement error, the choices of 51% of our subjects do not conform to it.
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cation. However, our results suggest that people also care about the overall attractiveness of
a contract when allocating time, which implies that flat fees also matter for time allocation.
This tendency, which we call the attractiveness bias, can lead agents to allocate time across
contracts sub-optimally if their goal is to allocate time to maximize the payment they get.

Moreover, the model suggests that a resource-constrained principal faces a trade-off in
designing a contract that performs well in both contract-choice and contract-time alloca-
tion. This trade-off is relevant if the Principal is unsure how the Agent will engage with the
contract. For instance, suppose the Principal is uncertain about the Agent’s time budget.
If the Agent is very time-constrained, he might be forced to choose one among the offered
contracts, whereas if the Agent has enough time to allocate between several projects, he
must decide how to split his time between the offered contracts.

The attractiveness bias, however, suggests that this trade-off is less pronounced than
the model predicts. In particular, our results indicate that to design a contract that performs
well in contract-choice and time allocation, the Principal must make sure that the flat fee
is not “too low,” lest the contract becomes unappealing for an Agent that chooses between
contracts and, by the attractiveness bias, also to an Agent that allocates time between con-
tracts. The Principal should then allocate her remaining resources to increasing the bonus
to attract the Agent’s time. Therefore, principals should first set a sufficiently high flat fee
to secure initial engagement, and then direct any remaining budget toward the bonus.
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Appendices

A Derivation of the Predictions
This section derives the model’s predictions for the four contract types. We also state the
specific choice and time allocation predictions of the model for the pairs in the experiment.
Recall that, given two contracts L1 and L2, L1 is chosen from the menu {L1,L2} if and
only if

p(α1, t1)∆L1 − p(α2, t2)∆L2 + (UL1F − U
L2
F ) > 0,

and that the amount of time allocated to L1 satisfies

p′(α2, T − tL1)
p′(α1, tL1)

=
∆L1
∆L2

.

In the following, we refer to the first expression as the Choice Formula and the second
expression as the Time Allocation Formula.

A.1 Confidence Contracts
A confidence contract LC relative to LB is one in which HC = HB, LC = LB, αC = αB,

pCF < pBF < pBS < pCS and pCF + pCS = pBF + pBS .

Manipulating the Choice Formula, we see that LC is chosen from the menu {LB,LC} if
and only if

p(αB, t)

1− p(αB, t)
>
pBF − pCF
pCS − pBS

.

Since p(αB ,t)
1−p(αB ,t)

is an increasing function of p(αB, t), a sufficiently confident Agent, i.e.,
one that assigns a sufficiently high probability to succeed in the task, should choose LC
over LB.

Manipulating the Time Allocation Formula, we get that the amount of time tLC allo-
cated to LC satisfies

p′(T − tLC , αB)

p′(tLC , αB)
=
pCS − pCF
pBS − pBF

Since the left-hand side increases with tLC and the right-hand side is greater than one, we
have that tLC > T

2
. That is, the Agent should always allocate more time to a confidence
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contract. Moreover, tLC should increase with pCS − pCF .
We use two confidence contracts in the experiment, LC1 and LC2 in Table 2. For both

contracts, the model predicts that subjects should choose LCi
from the menu {LB,LCi

}
if and only if p (0.5, 60) > 0.5. The model also predicts that subjects should always
allocate more time to LCi

than LB for each i ∈ {1, 2}, i.e., tLCi
> 60. Finally, given that

pC2
S − p

C2
F > pC1

S − p
C1
F , the model predicts that subjects should allocate more time to LC2

(relative to LB) than to LC1 (relative to LB), i.e., tLC2
> tLC1

.

A.2 Risk Contracts
A risk contract LR relative to LB is one in which pRS = pBS , pRF = pBF , αR = αB,

LR < LB < HB < HR and HR + LR = HB + LB

Manipulating the Choice Formula, we get that LR is chosen from the menu {LR,LB} if
and only if

K
(HR,LR)
(HB ,LB)(u) >

1− q(αB, t)

q(αB, t)
,

where K(HR,LR)
(HB ,LB)(u) := u(HR)−u(HB)

u(LB)−u(LR)
measures the Agent’s risk attitude (see Appendix B.2),

and q(αB, t) := p(αB, t)p
B
S + (1 − p(αB, t))p

B
F is the total probability of getting the high

prize, which increases with a subject’s confidence.
Therefore, a sufficiently risk-seeking Agent will always choose LR.15 Similarly, a suffi-

ciently risk-averse Agent will always chooseLB.16 Since the right-hand side is a decreasing
function of p(αB, t), for intermediate values of K(HR,LR)

(HB ,LB)(u), the more confident the Agent
is, i.e., the higher p(αB, t), the more prone she is to choose LR from {LR,LB}.

Manipulating the Time Allocation Formula, we get that the amount of time tLR allo-
cated to LR satisfies

p′(T − tLR , αB)

p′(tLR , αB)
=
u(HR)− u(LR)

u(HB)− u(LB)
.

Since the left-hand side is increasing in tLR and the right-hand side is greater than 1, if we
assume that u is strictly increasing, we have that tLC >

T
2

. That is, the Agent should always
allocate more time to LR. Moreover, tLR should increase with u(HR)− u(LR).

We use two risk contracts in the experiment, LR1 and LR2 in Table 2. The model

15 This will happen whenever K(HR,LR)
(HB ,LB)(u) > pBS /p

B
F

16 This will happen if K(HR,LR)
(HB ,LB)(u) <

pN,B

pS,B
.
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predicts that subjects should choose LR1 from the menu {LB,LR1} if and only if

K
(10,2)
(8,4) (u) >

1− q(0.5, 60)

q(0.5, 60)
,

and choose LR2 from the menu {LB,LR2} if and only if

K
(12,0)
(8,4) (u) >

1− q(0.5, 60)

q(0.5, 60)
.

The model also predicts that subjects should always allocate more time to LRi
than to LB

for each i ∈ {1, 2}, i.e., tLRi
> 60. Finally, the model predicts that subjects should allocate

more time to LR2 (relative to LB) than to LR1 (relative to LB).

A.3 Dominated Contracts
A dominated contract LD relative to LB is one in which HD = HB, LD = LB, αD = αB,

pDS < pBS and pDF < pBF .

Manipulating the Choice Formula, we get that LD is chosen from the menu {LB,LD} if
and only if

p(αB, t)

1− p(αB, t)
6
pBF − pDF
pDS − pBS

.

Since the left-hand side is always positive p(αB ,t)
1−p(αB ,t)

and the right-hand side is always neg-
ative, the Agent should only choose LB from the menu {LB,LD}.

Manipulating the Time Allocation Formula, we get that the amount of time tLD allo-
cated to LD satisfies

p′(T − tLD , αB)

p′(tLD , αB)
=
pDS − pDF
pBS − pBF

Since the left-hand side is increasing in tLD , if pDS −p
D
F

pBS−p
B
F
> 1, then tLD > T

2
. If pDS −p

D
F

pBS−p
B
F
< 1,

then tLD < T
2

. Moreover, the amount of time allocated to LD is increasing in pDS − pDF .
We use two dominated contracts in the experiment, namely LD1 and LD2 in Table 2.

The model predicts that subjects should always choose LB over LD1 and LD2 . The model
also predicts that subjects should allocate more time to LB than to LD1 , i.e., tLB > 60, but
more time to LD2 than to LB, i.e., tLB < 60. Finally, given that pD2

S − p
D2
F > pD1

S − p
D1
F ,

the model predicts that subjects should allocate more time to LD2 (relative to LB) than to
LD1 (relative to LB), i.e., tLD2

> tLD1
.
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A.4 Ambiguous Contracts
An ambiguous contract LA relative to LB is one in which HA = HS , LA = LS , pAS = pBS ,
pAF = pBF , but, for some ε > 0,

αA ∈ [αB − ε, αB + ε]

We postulate that the Agent evaluates LA in two steps. She first resolves the ambiguity
with respect to αA, i.e., she decides which contract among those in the set {Lx : x ∈
[α− ε, α + ε]} she is facing, and then evaluates the resulting contract using (1).

She resolves the ambiguity with respect to αA by substituting it by

αε := γε(αB + ε) + (1− γε)(αB − ε),

for some weight γε, which measures the agent’s ambiguity attitude.
Manipulating the Choice Formula, we get that LA is chosen from the menu {LB,LA}

if and only if p(αε, t) > p(αB, t). If we assume that p(·, t) is strictly increasing, we have
that LA is chosen from {LA,LB} if and only if αε > αB. Or, equivalently, if

γε > 1/2.

Therefore, LA is chosen from {LA,LB} if and only if the Agent is ambiguity seeking (see
Appendix B.2).

Manipulating the Time Allocation Formula, we get that the amount of time allocated to
LA satisfies

p′(T − tLA , αB)

p′(tLA , αε)
= 1

Therefore, the predictions about time allocation rely on the assumptions about the cross-
derivative of the belief function with respect to time and the completion rate. We refrain
from making an assumption about this cross-derivative and, hence, from making predic-
tions about time allocation for ambiguous contracts.

In the experiment, we use two ambiguous contracts, namely LA1 and LA2 (see Table 2).
The model predicts that subjects should choose LAi

from the menu {LB,LAi
} if and only

if αεi > 0.5.
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A.5 The Model’s Predictions in the Experiment
Tables 9 to 12 summarize the model’s predictions about choice and time allocation in each
pair of contracts in the experiment.

Table 9: Confidence contracts - Predictions

(LB ,LC1
) (LB ,LC2

)

Choice Ci

p(0.5, 60) > 0.5 iff {LC1
}

p(0.5, 60) = 0.5 iff {LB ,LC1}
p(0.5, 60) < 0.5 iff {LB}

p(0.5, 60) > 0.5 iff {LC2
}

p(0.5, 60) = 0.5 iff {LB ,LC2}
p(0.5, 60) < 0.5 iff {LB}

Time Ci

tLC1
> tLB

tLC2
> tLB

tLC2
> tLC1

*Assumption(s):
(i) Successful elicitation of p(0.5, 60)

Table 10: Risk contracts - Predictions

(LB ,LR1
) (LB ,LR2

)

Choice Ri

K
(8,2)
(6,4) (u) >

1−q(0.5,60)
q(0.5,60) , iff {LR1

}
K

(8,2)
(6,4) (u) =

1−q(0.5,60)
q(0.5,60) iff {LB ,LR1}

K
(8,2)
(6,4) (u) <

1−q(0.5,60)
q(0.5,60) iff {LB}

K
(10,0)
(6,4) (u) > 1−q(0.5,60)

q(0.5,60) , iff {LR2
}

K
(10,0)
(6,4) (u) = 1−q(0.5,60)

q(0.5,60) iff {LB ,LR2}
K

(10,0)
(6,4) (u) < 1−q(0.5,60)

q(0.5,60) iff {LB}

Time Ri

tLR1
> tLB

tLR2
> tLB

tLR2
> tLR1

*Assumption(s):
(i) Successful elicitation of p(0.5, 60)

(ii) For (LB ,LR1
), the elicited u must satisfy u(10) > u(8) > u(4) > u(2)

(iii) For (LB ,LR2
), the elicited u must satisfy 1 > u(8) > u(4) > 0

Table 11: Ambiguity contracts - Predictions

(LB ,LA1
) (LB ,LA2

)

Choice A∗i

α[0.4,0.6] > 0.5, iff {LA1
}

α[0.4,0.6] = 0.5 iff {LB ,LA1
}

α[0.4,0.6] < 0.5 iff {LB}

α[0,1] > 0.5, iff {LA2
}

α[0,1] = 0.5 iff {LB ,LA2
}

α[0,1] < 0.5 iff {LB}

Time Ai

— —

—
*Assumption(s):

(i) Successful elicitation of p(x, 1), for x ∈ {0.2, 0.5, 0.8}

(ii) p(0.8, 60) > p(0.5, 60) > p(0.2, 60)
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Table 12: Dominated contracts - Predictions

(LB ,LD1
) (LB ,LD2

)

Choice Di {LB} {LB}

Time Di

tLD1
< tLB

tLD2
> tLB

tLD2
> tLD1

A.6 Robustness of Time Predictions
The model’s time predictions on confidence and risk contracts would still hold for differ-
ent preferences over contracts. In fact, assume that subjects evaluate contracts using the
formula

U(L|t) = ρ(α, t)V (LSuccess) + (1− ρ(α, t))V (LFailure),

where ρ(α, t) : [0, 1] × R+ → [0, 1] is a decision weight, V a functional over lotteries,
and LSuccess and LFailure the lotteries one gets if one succeeds and fails in the task associated
with L. Assume that ρ(α, ·) is increasing, concave, and continuously differentiable. Taking
first-order conditions of the time allocation problem

max
t∈[0,T ]

[U(LB|t) + U(LX |T − t)] . (6)

and assuming that α1 = α2 =: α, we get to

ρ′(α, T − tLB)

ρ′(α, tLB)
=
V (LBSuccess)− V (LBFailure)

V (LXSuccess)− V (LXFailure)
.

Assume first that we have, for any lottery (p,H; 1− p, L), we can write

V ((p,H; 1− p, L)) = f(p,H) + f(1− p, L),

for some super-modular function f : [0, 1] × R → R. That is, f satisfies the following
property: for every p1, p2 ∈ [0, 1] and x1, x2 ∈ R,

f(max{p1, p2},max{x1, x2})− f(p1, x1) > f(p2, x2)− f(min{p1, p2},min{x1, x2}),

and this inequality is strict whenever (p1, x1) and (p2, x2) are strictly ranked by the component-
wise ordering of R2 .

Recall that in the baseline, confidence, and risk contracts, the probabilities of getting
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the high prize if one succeeds and fails sum up to 1. Therefore,

V (LBSuccess)− V (LBFailure)

V (LCSuccess)− V (LCFailure)
=

[f(pBS , H)− f(pBS , L)]− [f(1− pBS , H)− f(1− pBS , L)]

[f(pCS , H)− f(pCS , L)]− [f(1− pCS , H)− f(1− pCS , L)]
,

and, for risk contracts,

V (LBSuccess)− V (LBFailure)

V (LRSuccess)− V (LRFailure)
=

[f(pS, HB)− f(1− pS, HB)]− [f(pS, LB)− f(1− pS, LB)]

[f(pS, HR)− f(1− pS, HR)]− [f(pS, LR)− f(1− pS, LR)]
.

Since f is super-modular,

max

{
V (LBSuccess)− V (LBFailure)

V (LCSuccess)− V (LCFailure)
,
V (LBSuccess)− V (LBFailure)

V (LRSuccess)− V (LRFailure)

}
< 1,

and, hence, tLB < T/2.
As an illustration, assume that f(p, x) = w(p)u(x), where w : [0, 1] → [0, 1] and

u : R → R are strictly increasing. We can interpret w as a probability weighting function.
Then, f is super-modular; hence, time predictions about risk and confidence contracts are
robust to probability weighting.

Time predictions about confidence contracts are even more robust because they still
hold, provided only that V is (strictly) increasing with respect to first-order stochastic dom-
inance. In fact, since

LCSuccess �FOSD LBSuccess �FOSD LBFailure �FOSD LcFailure,

where %FOSD is the ranking of lotteries according to first-order stochastic dominance, we
get that

V (LBSuccess)− V (LBFailure)

V (LCSuccess)− V (LCFailure)
< 1,

and, hence, tLB < T/2.

B Further details on the experimental design

B.1 Maze selection
We employed an algorithm to generate what are known as “perfect” mazes. The algorithm’s
key parameters are width, height, Compactness Factor (CF), and Dead End Index (DEI).
The width and height parameters dictate the dimensions of the maze by specifying the
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number of cells it comprises. Meanwhile, the CF serves as a metric for assessing maze
compactness. A high CF value indicates a compact structure in that the solution path of the
maze is short relative to the overall maze size. In contrast, a low CF value indicates a less
compact arrangement, with the solution path traversing a larger portion of the maze. The
DEI quantifies the distribution of dead ends in a maze. A maze with a high DEI features a
dispersed arrangement of lengthy dead ends, whereas a maze with a low DEI value exhibits
a concentrated distribution of shorter dead ends.

A separate group of subjects played many mazes of width and height equal to 20 but
with varying CF and DEI. These subjects had a 60-second deadline to solve each maze and
were paid for the total number of mazes they solved. We used these subjects’ performances
to find mazes with the completion rates we needed for our experiment. That is, if a contract
states a completion rate of 50%, the contract would have a maze that 50% of these subjects
solved in, at most, 60 seconds.

Figure 7 presents a sample screen for completing a maze. The subjects had to navigate
the blue square to the green dot using the keyboard’s up, down, left, and right arrow keys.

Figure 7: Sample screen of a maze

B.2 Details of Part III: The Characteristics and their Measurement
In Part III of the experiment, we elicit the characteristics of subjects needed to test the
predictions of our model and some other characteristics of our subjects.

B.3 Task 1: Confidence Attitude
The agent’s belief in her probability of success in solving the maze associated with a con-
tract, i.e., the function p , plays a crucial role in our analysis. It captures how confident a
subject is, as the following definition formalizes.
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Definition 4 Given t > 0 and a completion rate α, we say that an Agent is over-confident
at (α, t) if p(α, t) > α; confident-neutral if p(α, t) = α; and under-confident if p(α, t) <

α.

Given (α, t) ∈ [0, 1] × R+, we can elicit p(α, t) as follows. Consider the contract
L = (H,L, 1, 0, α, t). The value of this contract is

U(L) = p(α, t)u(H) + (1− p(α, t))u(L).

For each p ∈ [0, 1], define the contract Lp that pays the lottery Lp := (p,H; 1 − p, L) for
sure and note that, according to the model,

U(Lp) = pu(H) + (1− p)u(L).

Assuming that u is strictly increasing, there exists a unique value of p?(α, t) ∈ [0, 1] such
that U(L) = U(Lp?). We then have that U(Lp) > U(L) if and only if p > p?(α, t).

In Task 1, we elicit p(0.2, 60), p(0.5, 60), and p(0.8, 60) through a multiple price list.
More specifically, for each of these probabilities, we use a multiple price list with 11 lines,
in which on every line ` ∈ {0, . . . , 10}, we ask the subject to choose between the L and the
contract L0.1`. If at line `? ∈ {0, . . . , 10}, the subject switches from the choice of L to the
choice of L0.1`? , then we know that

p(α, t) ∈ (0.1(`? − 1), 0.1`?].

B.4 Task 2: Ambiguity Attitude
Recall that given an ambiguous contract LA (relative to LB ), where αA ∈ [αB−ε, αB +ε],
we assume that the Agent first resolves the ambiguity with respect to αA by setting it equal
to

αε := γε(αA + ε) + (1− γε)(αA − ε),

for some weight γε. We interpret γε as the agent’s attitude towards ambiguity and say that
she is ambiguity-averse if γε < 1

2
; ambiguity-neutral if γε = 1

2
; and ambiguity-loving if

γε >
1
2
.

In Task 2, we use a Multiple Price List to elicit bounds for α0.1 and α0.5 in the same
way we did for p(α, t) in Task 1.
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B.5 Task 3: Risk Attitude
In our model, the curvature of the agent’s (Bernoulli) utility function u captures her risk
attitude. Therefore, the decision-maker is risk-averse if and only if u is concave; risk-

neutral if and only if u is linear; and risk-loving if and only if u is convex.
From now on, we focus on a risk-averse agent, but what we say can be easily adapted

to a risk-neutral or risk-seeking agent. Fix H1, H2, L1, L2 ∈ R with H2 > H1 > L1 > L2

and H2 −H1 = L1 − L2. Define

K
(H2,L2)
(H1,L1)(u) :=

u(H2)− u(H1)

u(L1)− u(L2)
.

If u is strictly increasing, this is well-defined, and we have that K(H2,L2)
(H1,L1)(u) 6 1 whenever

u is concave. Moreover, given any strictly increasing concave function ϕ, we have that17

K
(H2,L2)
(H1,L1)(ϕ ◦ u) =

ϕ(u(H2))− ϕ(u(H1))

ϕ(u(L1))− ϕ(u(L2))
6
u(H2)− u(H1)

u(L1)− u(L2)
= K

(H2,L2)
(H1,L1)(u).

Hence, the more concave u is,18 the smaller K(H2,L2)
(H1,L1)(u) will be. Hence, K(H2,L2)

(H1,L1)(u) cap-
tures the Agent’s risk attitude.

We can then elicit subjects’ risk attitude by eliciting u and calculating K(H2,L2)
(H1,L1)(u). To

elicit u, we proceed as follows. Fix two prizes L̄, H̄ ∈ R with L̄ < H̄ , and set u(L̄) = 0

and u(H̄) = 1. To elicit x ∈ (L̄, H̄), notice that there exists a unique px ∈ (0, 1) such that

u(x) = U(x) = U(Lx) = pxu(H̄) + (1− px)u(L̄) = px,

where Lx = (px, H̄; 1 − px, L̄) Therefore, to elicit u(x), we need to elicit the probability
the probability px that would make her indifferent between the contract (px, H̄; 1 − px, L̄)

and receiving x for sure. To make the elicitation of px incentive compatible, we use the
BDM mechanism (Becker et al. (1964)).

17 By the concavity of ϕ, whenever H2 > H1 > L1 > L2, we have that

ϕ(u(H2))− ϕ(u(H1))

u(H2)− u(H1)
6
ϕ(u(H1))− ϕ(u(L1))

u(H1)− u(L1)
6
ϕ(u(L1))− ϕ(u(L2))

u(L1)− u(L2)
.

18 Given two strictly increasing and concave functions u1, u2 : Rn → R, we say that u1 is more concave
than u2 if there exists a concave ϕ : R→ R such that u1 = ϕ ◦ u2.
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B.6 Tasks 4 to 8: curvature, risk, over-placement
Task 4 provides information about the curvature of the function p(0.5, ·). This task is a
modified version of the procedure introduced in Avoyan and Romagnoli (2023). Subjects
were told they would have 3 minutes to solve a maze with a completion rate of 50% but
could decide how they wanted to be compensated.

They could choose between three payment options. In Option A, the subject would
earn $10 if she solved the maze in at most 2 minutes and $0 otherwise. In Option B, with a
50% probability, the subject would earn $10 if she has successfully solved the maze in, at
most, 1 minute and $0 otherwise. If the coin lands on Tails, the subject would earn $10 if
they solved the maze in 3 minutes and $0 otherwise. In Option C, the subject declared to
be indifferent between Options A and B. By choosing Option A, they reveal that p(0.5, ·)
is concave. By choosing Option B, they reveal that p(0.5, ·) is convex. By choosing Option
C, they reveal that p(0.5, ·) is linear.19

Tasks 5 was an alternative risk aversion elicitation task using a price-list procedure from
Holt and Laury (2002). Task 6 measures subjects over precision (Moore and Healy (2008)),
which elicits a subject’s belief about how sure she is about the truth of a given statement.
More specifically, subjects were asked how far the moon was from the Earth. They were
also asked to what percentage of subjects their answer was closer to the truth than. For
example, if they answered 75% to the second question, they believed their answer was
closer to the actual distance than 75% of the other subjects. They were rewarded for the
accuracy of both guesses.

Tasks 7 and 8 were used by Agranov and Ortoleva (2017) to elicit subjects’ attitudes
towards compound lotteries. In Task 7, subjects are asked to allocate 100 tokens between
a safe and risky investment. The risky investment had a 50 percent chance of success and
returned two and a half times the investment if successful and nothing otherwise. Task 8

repeats Task 7, but the risky investment was a compound lottery, which, when reduced, was
equivalent to the risky investment in Task 7. Subjects with neither aversion nor attraction to
compound lotteries should invest the same number of tokens in both tasks. In contrast, sub-
jects who dislike (like) compound lotteries will invest less (more) in Task 8 (see Agranov
and Ortoleva (2017)).

19 This is analogous to eliciting risk preference by offering a sure payment versus a convex combination of
payments whose mean is the sure payment.
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